TUDOMÁNY
A Rovatból

Az oltásellenesek legfőbb érvének cáfolata: évtizedes kutatások vezettek az mRNS vakcinákhoz

A koronavírus elleni védőoltás csak látszólag készült el gyorsan. A New York Times összeszedte, mennyi tudós dolgozott évtizedeken át azokon az építőkockákon, amelyekből végül összeállt a megoldás.


Azok, akik a mai napig nem hajlandóak beoltatni magukat, a legtöbbször azt hangsúlyozzák, hogy gyanúsan gyorsan lett kész a koronavírus elleni vakcina, ami számukra azt jeleneti, hogy nem lehet megbízható.

Bár a Pfizer-BioNTech és a Moderna valóban a járvány kirobbanása után alig egy évvel piacra dobhatta az oltását, az ide vezető út egyáltalán nem volt rövid, és nem is akkor kezdődött, amikor a világ tudósai tudomást szereztek a Covid-19-ről. Az elmúlt évtizedekben a világ különböző pontjain végzett, egymástól független kutatási előzmények kellettek a sikerhez. Bár azt senki sem tudhatta, hogy a saját kutatása egyszer pont a koronavírus-járvány leküzdésében segít majd, a tudósoknak nem a nulláról kellett elindulniuk az ellenszer keresésekor.

A New York Times egy rendkívül részletes cikkben szedte össze, hogy milyen kísérletek és mennyi véletlen segített a megoldáshoz.

A történetből kiderül, hogy sokáig jelentéktelennek tűnő kutatásokról derült ki utólag, hogy nagyon is fontosak, olyan tudósok munkái kamatoztak, akik azelőtt évekig hiába könyörögtek pénzért, és akik gyakran félbe is hagyták kísérleteiket. De a szálak végül is találkoztak.

Az első lépés az volt, amikor 1960 áprilisában egy cambridge-i kutatócsoport, köztük két leendő Nobel-dijas, Francis Crick és Sidney Brenner, felfedezték a hírvívő RNS-t (mRNS) génmolekulát, amely segít a sejteknek proteint termelni.

A felfedezés után azonban sokáig semmi sem történ, mert a molekulát nehéz volt izolálni, ha megpróbálták, szétesett. 40 évvel később, 1998-ban a pennsylvaniai egyetem egyik fénymásolója előtt futott össze két tudós: Drew Weissmann, aki korábban a HIV-programban dolgozott és Karikó Katalin, aki Szegedről került Amerikába.

Karikót szenvedélyesen érdekelte az mRNS. Biztos volt benne, hogy áttörést hozhat az orvostudományban. A hagyományos oltások módosult vírusokat, vagy azok elemeit vitték be a testbe, hogy az immunrendszert a támadók ellen edzzék. Az mRNS-vakcina azonban olyan kódolt istrukciókat szállít, amelyek lehetővé teszik az emberi sejtek saját vírusproteineket termeljenek ki. Weissman és Karikó Katalin úgy gondolták, hogy így jobban utánozhatnák a valóságos fertőzést, és határozottabb immunválaszt válthatnának ki. Az mRNS törékenysége miatt azonban kevesen hittek abban, hogy valóban alkalmas lehet vakcina előállítására.

A két kutató mRNS-molekulákat adott hozzá petri-csészékben tenyésztett emberi sejtekhez, és mint az várható volt, az mNRS utasítására a sejtek különleges proteineket termeltek. De amikor az mRNS-t egerekbe fecskendezték, az állatok megbetegedtek.

Hét éven át tanulmányozták az mRNS működését, és számos kísérletük kudarcot vallott. Az állatok immunrendszere ugyanis az mRNS-t támadó kórokozónak érzékelte, ezért elpusztította, és az állatok ebbe belebetegedtek. Aztán rájöttek, hogy a sejtek egy különleges kémiai módosulással védik a saját mRNS-üket. Így az mRNS kisebb módosításával próbálkoztak, mielőtt azt beinjekciózták volt a sejtekbe. Ez működött: az mRNS-t immunválasz nélkül fogadták be a sejtek.

Karikó Katalin és Drew Weissman 2005-ben írtak eredményeikről tanulmányt, de az olyan tekintélyes szaklapok, mint a Nature vagy a Science, kategorikusan elutasították, csak a kevésbé ismert Immunity-ben jelenhetett meg.

A negatív visszhangok ellenére mindketten hittek abban, hogy felfedezésük egyszer megváltoztatja a világot.

Immár tudták, hogyan védjék meg a sejtbe került mRNS-t, de ahhoz, hogy oltásként vagy gyógyszerként működjön, e törékeny molekuláknak valami védőpajzsra volt szükségük a véráramlatban, hogy megakadályozzák lebomlásukat, miközben a sejtek felé tartanak.

És itt kapcsolódott be a második szál. Egy vancouveri biokémikus csapat évek óta azon dolgozott, hogy miként lehet a génmolekulákat biztonságosan az emberi sejtekhez szállítani.

Vezetőjük, Pieter Cullis fő kutatási területe a lipidek, a sejthártyák alapját képező zsírsav-tartalmú szerves anyagok voltak. Ezek borítják be a test valamennyi sejtjét. Cullis doktor azzal kísérletezett, hogy olyan lipidhártyákat tervez, amelyek a génanyagot „becsomagolva” viszik a sejtekbe. Nehéz dolga volt: egyrészt a kísérleti zsírgömbök mérete a sejtek 1% volt, másrészt pedig az emberi sejteknek olyan kifinomult védelmi rendszere van, hogy a tápálékon kívül semmit sem engednek be. Ráadásul egyes lipidfajták igen mérgezőek voltak és olyan elektromos töltéssel rendelkeztek, amelyek széttéphették volna a sejthártyákat. A nagy áttörést az hozta meg, hogy a zsírgolyók pozitív töltetét DNS-módosításnak vetették alá, az így a mérgező hatással együtt eltűnt, amikor bekerült a véráramlatba.

Mivel nem volt elég érdeklődés az eljárás iránt, Cullis eladta a lipid-technológia licenszét egy Protiva nevű cégnek, amely Ian MacLachlan biokémikus vezetésével 2004-ben oly módon burkolta be zsírrétegbe a génanyagot, hogy a gyógyszercégek növelhessék termelésüket, és megváltoztatta a lipidanyagot, hogy kevesebb vesszen el az értékes anyagból. Miután Karikó Katalin úgy látta, hogy ezek döntő fontosságúak lehetnek az mRNS-alapú gyógyszerekhez, megpróbálta meggyőzni MacLachlant, hogy dolgozzanak együtt. Ez azonban üzleti, illetve a szellemi tulajdon körüli jogi nézeteltérések miatt meghiúsult.

A harmadik kulcsmomentum 1996-ban kezdődött, amikor a Clinton-kormányzat ugyancsak több milliárd dollárt áldozott a 15 év alatt világszerte 6 millió halálos áldozatot követelő AIDS-et okozó HIV-vírus elleni oltás előállítására.

Bill Clinton az Ovális Irodában kérdőre vonta Dr. Anthony Faucit, aki már akkor is az amerikai elnök egészségügyi főtanácsadója volt, hogy másfél évtized alatt miért nem sikerült egy vakcinát összehozniuk. Fauci azt felelte, hogy hiányzik a tudósok közti koordináció. Öt hónappal később Clinton bejelentette egy vakcinakutató központ létrehozását, amely végül 2000-ben nyílt meg Bethesdában.

A kutatók itt megpróbálták a sejteket támadó HIV-vírusok tüskéit célbavenni, és beazonosítani az antitestekre legérzékenyebb pontjait. Bár a HIV-oltás nem sikerült, többek között azért, mert a vírus tüskéje más alakot ölt támadás előtt és alatt, de a program néhány résztvevője, köztük dr.Graham, aki éppen az AIDS-betegekkel való találkozásai nyomán szakosodott a virológiára, rájött néhány titokra, amelyek alapján fel lehetett térképezni a koronavírusok tüskéit.

2008-ban csatlakozott egy Jason McLellan nevű fiatal orvos Grahamhez, aki akkor már az elsősorban kisgyermekekre életveszélyes emberi légúti óriássejtes vírust (RSV) tanulmányozta, és együtt megtalálták azt a proteint, amely a jelenleg klinikai tesztelés alatt álló oltások alapja lett. Amikor McLellan 2013-ban saját laboratóriumának megnyitására készült Dartmouth-ban, Graham azt tanácsolta neki, hogy a koronavírusokat állítsa a kutatások középpontjába. Korábban ezeknek nem sok figyelmet szenteltek sem a kutatók, sem a befektetők, mivel azonban terjedőben volt a MERS, 11 évvel korábban pedig Dél-Kínában felbukkant a szintén gyilkos SARS, ezúttal másképp történt.

A MERS, mint minden koronavírus, emlékeztetett a HIV alakváltoztató proteinjeinek felszínen lévő tüskéire. Ellenállt minden oltáskísérletnek, rendkívül nehéz volt reprodukálni és laboratóriumban izolálni. Ráadásul nagyon nehéz volt mintát szerezni a közel-keleti fertőzöttektől, miután éveken át a nyugati tudósok helyi kollégáik kizárásával kutattak a szegény országokban, kormányaik védeni kezdték saját mintáikat. Ekkor tért vissza Mekkából Graham munkatársa, aki a jóval ártalmatlanabb HKU1-nek elnevezett koronavírustól fertőződött meg, ennek tanulmányozásából azonban fontos következtetéseket vonhattak le a veszélyesebb fajtákról is.

A csapat 2016-ban a Nature-ben publikálta a HKU1 tüskéjéről készült fotókat. Ekkor tették első ízben láthatóvá egy emberi koronavírus proteintüskéjét kezdeti formájában, mielőtt behatol a sejtekbe.

A feladat ezután az volt, hogy olyan stabil, alakját nem változtató tüskét hozzanak létre laboratóriumban, amely alkalmas oltás kifejlesztésére. Ebben fontos szerep jutott a Dartmouth-ba érkezett kínai posztdoktori ösztöndíjasnak, Nianshuang Wangnak, aki úgy vélte, hogy a SARS és MERS egy súlyosabb koronavírus-járvány előjátékai voltak. Ők kapta azt a feladatot, hogy nyugalmi állapotba hozza a MERS tüskeproteinjeit. Két sikertelen kísérlet után a harmadik megközelítés lett eredményes, de mivel 2017-ben a MERS-nek már régen vége volt, Wang tanulmányát elutasították a legtekintélyesebb szaklapok, az eljárás is csak a szabadalmi kérelemig jutott el.

Három évvel később azonban McLellan új, egy gyógyszercégnek dolgozó austini laboratóriumában elővehette felfedezését a koronavírus-vakcina előállításához.

McLellant dr. Graham riasztotta 2019. december 31-én a Vuhanból érkezett hírekkel. Azonnal munkához láttak, néhány nap alatt elkészült a covid-19 vírus tüskéinek génszekvenciája és február 15-én már közzétették a struktúrájukról és a rögzítési technikáról szóló tanulmányukat.

Ez utóbbi döntő jelentőségű volt a BioNTech és a Moderna mRNS-vakcináinak előállításához.

Miután tudósaik megkapták a tüske génszekvenciáját, szintetizálták az mRNS-molekulákat azzal az eljárással, amelyet Karikó Katalin és Drew Weissmann 15 évvel korábban kikísérletezett.

A molekulákat bevonták védő zsírréteggel, ahogy azt a vancouveri kutatók megálmodták és a tiszta folyadékot kis üvegfiolákba öntötték. Hamarosan megkezdődhettek az embereken való tesztelések.

Novemberben tették közzé az első eredményeket a Pfizer-BioNTech vakcina tesztjéről, amely 95%-os hatékonyságot mutatott.

Itt értek a csúcsra évtizedek alapvető felfedezései, amelyeket sokáig érdektelennek találtak. A fáradhatatlanul dolgozó kutatók, miközben hatalmas lépéseket tettek előre a maguk területén, nem tudhatták biztosan, hogy megéri-e a sok erőfeszítés. Ha az mRNS alapú, covid elleni vakcinák hosszú távon hatékonynak bizonyulnak, a legkülönbözőbb betegségek elleni oltások előtt is megnyithatják az utat a HIV-től a rákig.


Link másolása
KÖVESS MINKET:

Népszerű
Ajánljuk
Címlapról ajánljuk


TUDOMÁNY
A Rovatból
25 éven belül mind meghalunk - jósolja a neves tudós, és azt is elárulja, miért gondolja így
A Cambridge-i Egyetem kutatója szerint civilizációnk önpusztító úton jár. Ha ez nem lenne elég, a Földet űrből érkező fenyegetések is káoszba sodorhatják 2050-re.


Luke Kemp, a Cambridge-i Egyetem kutatója szerint a világ 25 éven belül véget érhet. A tudós az Egzisztenciális Kockázatokat Vizsgáló Központ munkatársa a neves intézményben, ahol korábbi civilizációk pusztulását tanulmányozza, arra keresve a választ, hogy a jövőben mi történhet a ma élő társadalommal.

Kemp legutóbb a The Great Simplification podcastben beszélt az elméletéről. „Tragikus, hogy gyakorlatilag egyetlen amerikai választás sem a jelölt nukleáris fegyverekkel kapcsolatos politikája alapján dőlt el. Pedig a legpusztítóbb dolog, ami valaha történhet, az Egyesült Államok nukleáris csapása – és erről egyetlen ember dönthet, az elnök. És ez soha, semmilyen módon nem játszik szerepet a választásokban” - osztotta meg a feltételezését.

A tudós a témáról írt egy könyvet is, amiben kifejti: minden mára eltűnt civilizáció végül az önpusztító életmódja miatt bukott el. Erről korábban a Guardiannek azt mondta,

„ahogy az elit egyre több vagyont szív ki az emberekből és a földből, a társadalmak egyre törékenyebbé válnak, ami belharcokhoz, korrupcióhoz, a tömegek elszegényedéséhez, egészségtelenebb emberekhez, túlterjeszkedéshez, környezetpusztuláshoz és egy kis oligarchia rossz döntéseihez vezet. A kiüresedett társadalmi vázat végül olyan sokkok törik össze, mint a járványok, a háború vagy a klímaváltozás.”

Kemp szerint 2050-re egy napkitörés is elpusztíthatja a világ elektromos rendszereit. Az 1859-es Carrington-eseményhez (az írott történelem legintenzívebb, a távíróvezetékekben magas feszültséget indukáló, majd hatalmas tüzeket és kommunikációs összeomlást okozó geomágneses viharához) hasonló jelenség ma egy csapásra tönkretenné a számítógépeket, a bankrendszert, az internetet és a műholdakat is, ami káoszba taszítaná az egész bolygót.

A kutató úgy számol, hogy egy ilyen apokaliptikus esemény esélye évtizedről évtizedre 20,3 százalékkal nő, és 2050-re eléri az 50 százalékot.

„Egy teljes iparág épül megerősített, luxus bunkervillákra medencékkel, borospincékkel, mesterséges napozókertekkel és föld alatti hidroponikus farmokkal, Texastól egészen Csehországig” – fűzte hozzá célzásképpen, hogy a jól értesült és vagyonos felső tízezer talán nem véletlenül készül a világvégére.

(LadBible)


Link másolása
KÖVESS MINKET:

TUDOMÁNY
A Rovatból
Újabb világjárvány kialakulására figyelmeztetnek: a Mpox vírus új módon és különösen gyorsan terjed emberről emberre
Az Egészségügyi Világszervezet a héten nemzetközi vészhelyzetet hirdetett, az Európai Betegségmegelőzési Központ pedig megerősítette, hogy a vírus terjedése felgyorsult.


Az Mpox nevű - a majomhimlőként emlegetett, modern vírusváltozat - újabb mutánsai egyre több európai országban jelennek meg, és nagyon gyorsan terjednek.

A fertőzés elsősorban közvetlen fizikai érintkezéssel adódik át, és leginkább a 15–34 éves korosztály érintett. A betegség magas lázzal, bőrön és intim területeken jelentkező sérülésekkel járhat.

Berlinben a nyár közepén figyelmeztetést adtak ki, mert az év eleje óta több mint négyszer annyi fertőzést regisztráltak, mint az előző két évben összesen. A helyi egészségügyi hatóságok szerint ebben szerepet játszhattak a nagy nemzetközi rendezvények és fesztiválok is.

Az Mpox ugyanabba a víruscsaládba tartozik, mint a korábbi évtizedekben világszerte rettegett himlő, amely ellen az 1980-as évek oltási kampányai hoztak megoldást. A betegséget eredetileg Nyugat- és Közép-Afrikában írták le, és idén tavasszal brit kutatók arra figyelmeztettek, hogy globális egészségügyi fenyegetést jelenthet. A Frankfurter Rundschau szerint azt mondták, hogy a világjárvány pontos időpontja nem látható előre, de a kockázat nagyon magas.

Az Egészségügyi Világszervezet a héten nemzetközi vészhelyzetet hirdetett, az Európai Betegségmegelőzési Központ pedig megerősítette, hogy a vírus terjedése felgyorsult. Kína emiatt szigorúbb határellenőrzést vezetett be, és a fertőzés Svédország után már Nagy-Britanniában és Németországban is gyorsan terjed.

A német Robert Koch Intézet kiemelte, hogy az Mpox állatoktól indult, de emberről emberre a IIb klad nevű variáns terjed a legkönnyebben. A betegség jellemző tünetei közé tartozik a láz, a testi fájdalom és a himlőszerű, gennyes bőrelváltozások. Bár általában enyhébb lefolyású, mint a himlő, előfordulhatnak súlyos esetek és halálesetek is.

Az intézet arra figyelmeztet, hogy zsúfolt helyeken, strandokon és szabadtéri programokon érdemes kerülni a bőrkontaktust, valamint nem szabad mások kiütéseit vagy sebeit megérinteni. A nemi úton történő fertőzés kockázata óvszer használatával csökkenthető. Különösen óvatosnak kell lenni olyan helyeken, ahol kevés ruhát viselnek az emberek, például edzőtermek öltözőiben vagy szaunákban.

A dpa német hírügynökség szerint a dán Bavarian Nordic már jelezte, hogy több mint 500 ezer adag Mpox elleni oltóanyag elérhető, és az idén összesen akár tízmillió adagot is le tudnak gyártani.

Forrás: economx


Link másolása
KÖVESS MINKET:


TUDOMÁNY
A Rovatból
Elképesztő titokra derült fény: így készíti a szervezetünk a kakit
Az emésztés folyamata a szájban indul, a vékonybélben folytatódik, majd a vastagbélben ér véget. Ebből is jól látható, hogy testünk minden része részt vesz a tápanyagok feldolgozásában.


A beleidben több trillió baktérium él, amelyek segítik az emésztést, és hozzájárulnak ahhoz is, hogy a széklet jellegzetes szagot és állagot kapjon – írja a Sciencealert. A kutatások már rég bebizonyították, hogy a kaki vízből, emésztetlen növényi rostokból, elhalt bélsejtekből és nagyrészt baktériumokból áll.

Az étel útja a szájban kezdődik:

a fogak felaprítják, miközben a nyálban található amiláz enzim már a keményítőt is bontani kezdi. Ezután a falat a nyelőcsövön keresztül lejut a gyomorba, ahol a sósav és az enzimek apró részekre bontják a szénhidrátokat és fehérjéket.

Néhány órával később az étel a vékonybélbe kerül, amely több mint 6 méter hosszú, és a belső felszínét bélbolyhok milliói borítják. Ezek hatalmas felszívófelületet biztosítanak, így a véráram könnyen felveszi a lebontott tápanyagokat, energiát és építőanyagot juttatva a sejtekhez. A vékonybélben baktériumok és enzimek segítik a további lebontást, a máj és az epehólyag epét, a hasnyálmirigy pedig enzimeket ad a folyamat támogatásához.

Ezt követően a béltartalom a vastagbélbe kerül, amely nagyjából 1,5 méter hosszú. Itt a fő feladat a víz visszaszívása. A vékonybél szintén elvon vizet, amely a vesékhez kerül a vizelet képződéséhez.

A vastagbélben a folyamat lassan zajlik, akár három napig is eltarthat. Ekkorra a béltartalom megszilárdul, és a baktériumok átalakítják az epét, így a színe zöldről barnára változik.

Egy orvos úgy fogalmazott: „Néhány páciensnek problémát okoz a tápanyagok felszívódása az ételből, mások pedig túl gyakran vagy épp túl ritkán van székletük.” Az emésztőrendszer minden része fontos szerepet tölt be: együtt biztosítják, hogy a szervezet felvegye a szükséges energiát és vizet, miközben eltávolítja mindazt, amire nincs szüksége.


Link másolása
KÖVESS MINKET:


TUDOMÁNY
A Rovatból
Magyar állatorvosi bravúr: a világon elsőként végeztek szürkehályog-műtétet egy parlagi sason
Speciális lencsét kapott, és hamarosan a másik szemét is megműtik. A cél az, hogy a madár élesen lásson, és akár újra szabadon élhessen.


A világon elsőként Magyarországon végeztek szürkehályog-műtétet egy parlagi sason. A műtétet egy hat fős - állatorvosokból és asszisztensekből álló - csapat felügyelte.

A madár azt követően került a Hortobágyi Madárkórházba, hogy három éve egy autó elütötte. Előbb a szárnyait hozták helyre, majd észrevették, hogy nem lát a sas. Ezért a jobb szemén szemlencse műtét hajtottak végre. Hamarosan a másik szemét is megoperálják.

A beavatkozás világszinten is egyedülálló. A műtét Szentesen végezték el a parlagi sason. A

páciens sem volt mindennapos, és a műtét sem volt szokványos. A végén például egy ásványvizes palackból készült speciális gallért adtak a madárra, hogy ne piszkálja a sebet.

A szemlencse-csere a humán gyógyászatban már rutinműtét, de a műtétet vezető orvos szerint sason a világon először hajtottak végre ilyet.

Dobos András állatorvos, szemsebészeti specialista elmondta: "A fény nem jutott le a retinához. Ezt a szemlencsét, a tokból egy speciális géppel eltávolítottuk az elszürkült maganyagot és megfelelő méretű, 40 dioptriás lencsét behelyeztük".

Az extrém erős látásjavítóra azért volt szükség, mert már szinte csak elmosódott foltokat észlelt a madár. Ráadásul a sasok látása nyolcszor élesebb az emberinél. Ezért ha gyengébb látássegítőt kap, akkor a vadonban könnyen belőle lenne préda.

A műtét után a szemhéjakat összevarrták, hogy nehogy véletlenül kikarmolja. A madár jól tűri, ha kézben tartják, főleg ha olyan, akit már ismer. A Hortobágyi Madárkórház állatorvosa korábban a szárnyait mentette meg.

Déri János kórházigazgató elmondta: "A szeme is sérült mind a kettő, és hát sajnálatos módon ez a sérülés azt követően, hogy ő belevakart, szennyeződött, fertőződött". Ez súlyos szemgyullaást okoztt, és a két szemére szinte megvakult. A két műtét után a cél az, hogy újra élesen lásson, és ha sikerül, akkor a sas megint szabad lehet.

VIDEÓ: Az RTL Híradó beszámolója


Link másolása
KÖVESS MINKET:

Ajánljuk