Egy új kutatás szerint a globális felmelegedés már most is jelentős hatással van a tejtermelésre, és a jövőben ez a probléma tovább súlyosbodhat – számolt be róla az Agroinform. A Science Advances tudományos folyóiratban megjelent tanulmány kimutatta, hogy
akár egyetlen forró nap is 10 százalékkal visszavetheti a tejhozamot, a hőstressz hatása pedig akár egy hétig is érezhető maradhat.
A kutatók 12 éven keresztül, 130 ezer tehenet vizsgálva elemezték az időjárási és gazdasági adatokat. Megállapították, hogy 26 Celsius-fok felett a tejhozam egyértelműen csökken. A hűtőrendszerek teljesítménye szintén a hőmérséklettől függ: 20 foknál még 50 százalékos hatékonysággal működnek, 24 foknál azonban már csak 40 százalékkal mérséklik a veszteséget.
Izraelben, ahol a tejtermelés fejlett technológiával és magas egyedi hozammal zajlik, a gazdák ventilátorokkal, szellőztető- és vízpermetező rendszerekkel próbálják csökkenteni a hőség hatását. A legmelegebb napokon azonban ezek a rendszerek is csak a veszteségek felét tudják kompenzálni.
A magas páratartalom tovább rontja az állatok közérzetét, mivel a hőség és a pára együtt gőzfürdő-szerű környezetet hoz létre. Ilyen körülmények között a tehenek akár 10 napig sem tudják visszanyerni korábbi teljesítményüket.
A tanulmány szerint hűtés nélkül a legnagyobb visszaesés napi 4 százalékos hozamcsökkenést jelenthet az évszázad közepére. Indiában, Pakisztánban és Brazíliában még hűtés mellett is napi 1,5–2,7 százalékos veszteséggel számolnak.
A gazdák nemcsak a hőséggel, hanem a csapadékeloszlás kiszámíthatatlanságával is küzdenek. A meleg éghajlatú, alacsony jövedelmű térségekben ezek a körülmények szinte fenntarthatatlanná teszik a tejtermelést. Európában is egyre több gazda küzd a zöld átállás követelményeivel.
A kutatók arra figyelmeztetnek, hogy ha nem történik előrelépés az alkalmazkodásban, a klímaváltozás alapjaiban változtathatja meg az étrendünket. A dolog pikantériája, hogy a tej mellett a kakaó, a kávé, a búza és a banán termelése is veszélybe kerülhet.
Egy új kutatás szerint a globális felmelegedés már most is jelentős hatással van a tejtermelésre, és a jövőben ez a probléma tovább súlyosbodhat – számolt be róla az Agroinform. A Science Advances tudományos folyóiratban megjelent tanulmány kimutatta, hogy
akár egyetlen forró nap is 10 százalékkal visszavetheti a tejhozamot, a hőstressz hatása pedig akár egy hétig is érezhető maradhat.
A kutatók 12 éven keresztül, 130 ezer tehenet vizsgálva elemezték az időjárási és gazdasági adatokat. Megállapították, hogy 26 Celsius-fok felett a tejhozam egyértelműen csökken. A hűtőrendszerek teljesítménye szintén a hőmérséklettől függ: 20 foknál még 50 százalékos hatékonysággal működnek, 24 foknál azonban már csak 40 százalékkal mérséklik a veszteséget.
Regisztrálj, vagy lépj be, hogy tovább tudd olvasni a cikket!
Közelít a „városgyilkos” aszteroida – A tudósok szerint növelni kell a bolygóvédelmi intézkedéseket
A minden idők legveszélyesebb aszteroidájának kikiáltott égitest a számítások szerint elkerüli a Földet, de mégsem nyugodhatunk meg teljesen. A Holdat eltalálhatja, és ha így lesz, azt mind meg fogjuk érezni.
Nemrég írtunk róla, hogy a tavaly év végén, a chilei ATLAS távcsőrendszerrel felfedezett 2024 YR4 jelű kisbolygó földi becsapódásának esélye szinte nullára csökkent, de ezzel párhuzamosan megugrott a lehetősége annak, hogy égi kísérőnk, a Hold felszínébe csapódik. A belátható időn belül, 2032 végére várt esemény éppen a Föld felőli oldalon történhet meg, így szabad szemmel is láthatnánk, amire kb. 5000 éve nem volt példa.
Bár csak 60 méteres (vagyis kb. akkora, mint a Szent István-bazilika oldaltornyai), ez az aszteroida képes lenne egy kisebb régió vagy város elpusztítására a Földön.
A 2024. december 27-i felfedezés óta aktívan megfigyelt égitest becsapódási esélyét hónapokon át egyre magasabbra módosították a kutatók, mígnem 2025 februárjában már 3,1 százaléknál járt, amivel elnyerte a valaha felfedezett legkockázatosabb aszteroida címet. A maga műfajában extrém magasnak számító rizikó miatt a média hamar ráragasztotta a „városgyilkos” nevet, mintegy jelezve, hogy a dinoszauruszokat kiirtó „bolygógyilkos” meteorok 10-15 kilométeres átmérőjéhez képest ugyan eltörpül, de igenis jelentős veszélyforrás.
A The Guardian tudományos munkatársa, Nicola Davis szerint, ha kihalási eseményt nem is vonna maga után, a pusztítása jelentős lenne: a 2024 YR4 becsapódása „7,8 megatonna TNT-vel” egyenlő robbanási energiát szabadítana fel, ami több mint 500 hirosimai atombomba erejének felel meg. Nem csoda, hogy a felfedezést követően életbe lépett a nemzetközi aszteroida-figyelő hálózat (IAWN) bolygóvédelmi protokollja: világszerte szakemberek tömege igyekezett minél jobban pontosítani az égitest pályáját.
Elhárult a veszély – legalábbis a Földre nézve, de a Hold még bajban lehet
A kutatók a távcsöves megfigyelések – többek között a James Webb űrtávcső 2025. márciusi mérései – és sok-sok számítás alapján elkezdték lefelé módosítani a földi katasztrófa esélyét, ami mostanra már csak 0.0017 százalék, vagyis elhanyagolható. Összehasonlításképp: a hírhedt Apophis aszteroida esetében 2004-ben még 2,7 százalékos becsapódási esélytől tartottak a csillagászok, ám a Live Science szerint a pálya pontosítása után kiderült, hogy a 2029-ben esedékes érkezése során valóban közeli (kb. 32 ezer kilométeres), de biztonságos távolságban fog elhaladni a Föld mellett. Ez egyébként egyedülálló lehetőséget nyit majd a megfigyelésére, hiszen a kb. 340 méteres objektum legalább tízszer közelebb lesz hozzánk, mint a Hold.
Apropó: Hold. Bár a 2024 Y4R esetében a kutatók kizárták, hogy veszélyt jelent a Földre, kiderült, hogy égi kísérőnket elég jó eséllyel eltalálhatja.
2025 júniusában – mielőtt a kisbolygó túlságosan eltávolodott volna és kikerült a teleszkópok látómezőjéből – sikerült még néhány pontos mérést végezni a pályájáról. Az azóta elvégzett számítások eredménye váratlan fordulatot hozott: kb. 4,3 százalék az esélye annak, hogy az aszteroida beleáll a Holdba. Ez ugyan nem nagy valószínűség, de ahhoz már elég, hogy a tudósok komolyan kezdjenek foglalkozni a „holdi becsapódás” forgatókönyvével.
„Kezdjük felismerni, hogy a ’védőpajzsot’ egy kicsit messzebbre is ki kellene terjesztenünk” – idézi a CNNDr. Paul Wiegertet, a kanadai Western University csillagászát. A tudós szerint ma már olyan dolgokat is „védenünk”, vagyis figyelnünk kell, amelyek távolabb vannak a Földtől, hiszen ezzel bővül a látókörünk és felkészülhetünk a becsapódási események földi hatásaira.
Az Y4R Holdba ütközése a tudomány számára szó szerint soha vissza nem térő esély lenne arra, hogy élőben megfigyelje egy ekkora objektum becsapódását, hiszen az előzetes számítások szerint az esemény a Holdnak azon az oldalán következne be, ami a Földről folyamatosan látható. Wiegert és kollégái egy friss tanulmányban kifejtik: az ütközést szabad szemmel is megfigyelhető villanás kísérné, amely néhány másodpercig tartana.
Az elemzés alapján az aszteroida nagyjából egy kilométer átmérőjű krátert ütne a Holdba, így ez lenne a legnagyobb becsapódás, ami a Hold felszínén az elmúlt 5000 évben történt.
A tudósok modellezése azt mutatja, hogy az YR4 akár százmillió kilogramm (vagyis nagyjából egy magyar parlamentnyi) kőzetet és port robbantana ki a Holdból a becsapódás pillanatában. A kráterből felszálló törmelék java a Hold felszínén terülne szét, ami komoly veszélyt jelentene az akkor már várhatóan ott tartózkodó űrhajósokra.
Mivel az űrkutatásban élen járó országok egymás lábán taposva igyekeznek visszatérni a lunáris felszínre, elég valószínű, hogy az emberiség a 2030-as évek elején már visszatérő vendég lesz a Holdon. A rendszeres küldetéseket, vagy állandó legénységgel működő bázis építését célzó terveket ugyanakkor – oly’ sok technológiai akadály mellett – most már az Y4R is keresztül húzhatja. A felszínre hulló törmelék egy része ráadásul kiszakadhat a Hold gravitációs vonzásából, és útnak indulna a Föld felé. Wiegert számításai szerint a 0,1–10 milliméteres porszemcsék akár napok-hetek alatt elérnék a bolygót, a parányi részecskék pedig – az extrém sebességük okán – látványos meteorhullást idézhetnek elő az éjszakai égbolton. Szép, de közben cseppet sem veszélytelen jelenség lenne.
„Bár nem számítunk nagyobb kődarabokra, legfeljebb cukorkocka méretűre, ezek a szemcsék gyorsabbak, mint egy lövedék. Ha egy műholdat találnának el, kárt okoznának benne” – hangsúlyozza Wiegert.
Az egycentiméteresnél nagyobb darabok túlnyomó része elégne a légkörünkben, de előfordulhat, hogy némelyik darab Föld körüli pályára áll – ebben az esetben műholdakat, űreszközöket vagy akár űrhajósokat is veszélyeztethetnek – írja a The Guardian. Wiegert úgy becsüli, hogy a néhány milliméteres porszemekből százszámra, ezerszámra juthat a Föld körüli pályára, ami azt jelentené, hogy a műholdflottánk néhány nap leforgása alatt akár tíz évnyi mikrometeorit-terhelést kaphat.
És az emberiség ma már túlságosan rá van utalva a műholdakra ahhoz, hogy erre a problémára rálegyintsen. „Az űr szinte mindenre hatással van – a kereskedelemtől és kommunikációtól kezdve a közlekedésen és iparon át az oktatásig és a közösségi médiáig. Ezért, ha elveszítjük az űrhöz való hozzáférést és a műholdak hatékony használatát, az komoly veszélyt jelentene az emberiségre” – vezette le az ABC 7 kérdésére Dan Oltrogge, az amerikai COMSPOC űrbiztonsági cég vezető tudósa.
A tudósok jelenlegi modelljei szerint egyébként nem kell tartani egy Kessler-szindróma méretű (akár évtizedekig tartó) kommunikációs összeomlástól, vagyis attól, hogy az aszteroida darabjai láncreakcióban leszedik az égről a műholdakat. A hatást inkább ahhoz lehetne hasonlítani, mint amikor kavics vágódik egy száguldó autó szélvédőjéhez. A műholdak napelemtáblái vagy egyéb kényes alkatrészei megsérülhetnek, de a műholdak zöme egyben – és működőképes állapotban – maradna az ütközések után. Részleges műhold-kiesések viszont minden bizonnyal történnének, így a navigációban és a kommunikációban lennének fennakadások egészen addig, amíg a műhold-konstellációk üzemeltetői elhárítják a károkat.
A Nemzetközi Űrállomásra leselkedő veszélyek mérlegelésével már nem bajlódnak a tudósok, mert a szerkezetet a tervek szerint 2030, vagyis legalább két évvel az Y4R érkezése előtt leszerelik: fokozatosan a légkörbe süllyesztve elégetik.
Hogyan védenénk ki egy veszélyes aszteroidát?
Vannak vészforgatókönyvek, és a NASA bolygóvédelmi irodái, valamint a világ tudósai minden nap lázasan kutatják a lehetséges megoldásokat egy földi, vagy akár holdi becsapódás elhárítására. Ha a 2024 YR4 a Föld felé tartana, a cselekvési terv viszonylag egyértelmű lenne, csak kérdés, hogy időben végre tudnánk-e hajtani.
A NASA 2022 szeptemberében tesztelt egy lehetséges módszert: a Double Asteroid Redirection Test (DART) küldetés keretében egy űreszközt szándékosan nekivezettek a Dimorphos kisbolygónak, hogy letérítsék a pályájáról. Ez a kisebb, holdszerű aszteroida, amely egy nagyobb égitest (a Földtől biztonságos távolságra haladó Didymos) körül kering, ideális jelölt volt a kísérletre, hogy egy ember alkotta, napjainkban is rendelkezésre álló eszközzel képesek vagyunk-e módosítani egy aszteroida útját.
A DART űrszonda kb. 21 960 km/órás sebességgel vágódott a kisbolygóba, és látványos sikert aratott: a földi teleszkópok adatai szerint 32–33 perccel rövidítette a Dimorphos keringési periódusát, sőt, megváltoztatta az alakját is. Szóval a válasz igen, tudunk úgy ütköztetni egy űreszközt, hogy az befolyásolja egy égitest mozgását.
„Ami a bolygóvédelem szempontjából fontos tanulság, hogy a laza törmelékhalom jellegű kisbolygók, mint a Dimorphos, nagyon könnyen eltéríthetők – tehát a kinetikus becsapódásos módszer hatékony lehet” – összegezi a Space.com a NASA vonatkozó tanulmányára hivatkozva.
Felmerül viszont a kérdés, hogy érdemes-e egy DART-hoz hasonló misszióval próbálkozni, ha a 2024 YR4 tényleg a Hold, és nem a Föld felé tart. A válasz nem egyértelmű. Julien de Wit, az MIT bolygótudományokkal foglalkozó docense (aki a James Webb űrteleszkóppal személyesen is mérte a 2024 Y4R mozgását) úgy véli, ez attól függ, milyen kockázatot jeleznek a pályaszámítások akkor, amikor az aszteroida három év múlva újra feltűnik a szemünk előtt. Addig – a jelenlegi eszközökkel – sajnos nem lehet megfigyelni a Föld irányából, mert a Nap túloldalán jár.
2028-ban viszont pontosan látni fogjuk, valóban ütközik-e a Holddal 2032-ben, vagy sem.
Andrew Rivkin, a Johns Hopkins Egyetem bolygókutatója szerint az aszteroidák megfigyelése számos okból nehéz feladat: rendkívül halványak (hiszen nem bocsátanak ki saját fényt, csak a napfényt verik vissza) és viszonylag aprók. „Az aszteroidákat fénypontnak látjuk, így a fényességükből és a hőmérsékletükből lehet következtetni a méretükre.”
A csillagászok évtizedeken át csak éjszaka tudták kutatni ezeket a halvány objektumokat, emiatt az égbolt azon része, ahonnan a Nap irányából érkezhet fenyegetés, gyakorlatilag láthatatlan maradt számunkra. Ez a világ legnagyobb „vakfoltja” a földi távcsöves hálózat számára, de hamarosan új eszközök állnak szolgálatba.
A NASA NEO Surveyor űrtávcsöve a tervek szerint 2027 végén indul, az Európai Űrügynökség NEOMIR műholdja pedig a 2030-as évek elején.
Az ABC 7 úgy tudja, ezek infravörös megfigyelésre alkalmas eszközök jelentősen csökkenteni fogják a vakfoltot, mivel a Nap közelében is észlelni tudják a közeli objektumokat. „A NEOMIR például kb. egy hónappal korábban észlelte volna a 2024 YR4-et, mint a földi távcsövek. Ez több időt adott volna a csillagászoknak az aszteroida pályájának elemzésére, és sokkal hamarabb kizárhatták volna a Földdel való ütközés lehetőségét” – magyarázta Richard Moissl, az Európai Űrügynökség bolygóvédelmi irodájának vezetője.
„Ezt az egyedülálló helyzetű aszteroidát próbatételként is felfoghatjuk” – fűzte hozzá de Wit. „Extra felkészülési időt kapnak a döntéshozók, vagy inkább néhány évnyi megnyugvást, hiszen nagyjából 80 százalék az esélye annak, hogy végül kizárhatjuk az ütközést” – jelentette ki a tudós.
Cseljabinszk miatt okkal félünk az aszteroidáktól
A 2024 YR4 azért keltett aggodalmat, mert lényegében „észrevétlenül” lopózott a Föld közelébe: az ATLAS teleszkóp csak két nappal azután vette észre, hogy elhúzott a bolygónk mellett, hiszen a Nap fénye addig eltakarta. És jól emlékszik a világ, hogy ugyanez történt 2013. február 15-én Cseljabinszknál: egy kb. 20 méteres aszteroida a Nap irányából érkezett, és váratlanul robbant fel a légkörben Oroszország felett.
A lökéshullám kb. 1500 embert sebesített meg – többnyire a nyomástól berobbanó ablaküvegek miatt –, és több ezer épületben okozott kárt. Az viszont, hogy senki sem halt meg, szó szerint a vakszerencsén múlt, hiszen az égitestet nem láttuk jönni, így azt sem tudtuk, veszélyes méretű-e és hova fog esni, kvázi a lakosságot sem lehetett előre figyelmeztetni.
Ha a cseljabinszki aszteroida akkora, mint a „városölő” Y4R – amit éppen csak kiszúrtunk, de akkor is későn –, óriási katasztrófa történhetett volna.
Az űrügynökségek a hasonló veszélyek miatt folyamatosan figyelik a Földhöz közeli pályán keringő kisbolygókat. Ezek közé a definíció szerint akkor sorolható egy égitest, ha kellően közel kerülhet a Földhöz, és elég nagy ahhoz, hogy akár jelentős kárt okozzon. A NASA meghatározása alapján nem tekintendők veszélyesnek azok az objektumok, amelyek soha nem jönnek a Nap–Föld távolság huszad részénél közelebb.
Nemrég még azt hittük, ilyen égitestből elenyészően kevés van, de a modern megfigyelőrendszerek okoznak meglepetéseket. 2025 júniusában például az új, chilei Andokban beüzemelt Vera C. Rubin Obszervatórium már a felkapcsolása első hetében több mint 2100, addig ismeretlen aszteroidát fedezett fel, és ezek közül hét bizonyult Föld-közelinek – viszont szerencsére veszélytelennek.
Fontos kiemelni, hogy sok ezer olyan objektum kering a Nap körül, amelyek keresztezhetik bolygónk pályáját.
A NASA a potenciálisan veszélyes kisbolygók kockázatelemzését a Sentry nevű automatikus rendszerrel végzi, amely hosszú távra előre képes kikalkulálni a friss felfedezések útját. Ezek alapján a ma ismert legveszélyesebb aszteroida már nem az Y4R, hanem a 490 méter átmérőjű Bennu. A törmelékhalom jellegű kisbolygó becsapódását egyikünk sem éri meg (ha egyáltalán bekövetkezik), hiszen várhatóan 2182. szeptember 24-én lesz a legközelebb a Földhöz, viszont a becsapódás esélye akkor is csak 1:2700-hoz.
Az elenyésző esélyek miatt miért kell mégis árgus szemekkel figyelni az égboltot? Például azért, mert az utóbbi években észlelt fenyegetések – különösen a cseljabinszki „meglepetés”, vagy az Apophis riasztó közelsége, a Bennu pályája és most a 2024 YR4 különös esete – ráirányították a figyelmet a bolygóvédelmi kutatások fontosságára.
A döntéshozók és űrhivatalok világszerte felismerték, hogy komoly erőforrásokat kell fordítani az égbolt módszeres vizsgálatára, a lehetséges ütközések előrejelzésére és az eltérítési módszerek fejlesztésére.
Még jó, hogy a rendelkezésünkre álló technológia egyre jobb: szinte napról napra több új objektumot fedezünk fel, és a nyomkövető rendszerek is sokkal pontosabbak, mint akár pár évvel ezelőtt. Ennek egy hátulütője azért lehet: ahogy telik az idő és mind kifinomultabbak az eszközeink, nőni fog az észlelések, valamint az Y4R-hez hasonló riasztások száma, és erre egy idő után ráunhat a közvélemény. Ettől függetlenül jó lenne, ha a kormányzatok és az űrügynökségek folytatnák a megkezdett munkát, hogy nagyobb eséllyel és időben vegyük észre a valóban fenyegető égitesteket. És az YR4 rámutatott még egy, eddig háttérbe szorult szempont fontosságára is: a jövő űrkorszakára készülve, illetve a földi kommunikáció védelme érdekében nemcsak a Földet, de a Holdat is meg kell óvnunk az aszteroidáktól. Fel van adva a lecke.
Nemrég írtunk róla, hogy a tavaly év végén, a chilei ATLAS távcsőrendszerrel felfedezett 2024 YR4 jelű kisbolygó földi becsapódásának esélye szinte nullára csökkent, de ezzel párhuzamosan megugrott a lehetősége annak, hogy égi kísérőnk, a Hold felszínébe csapódik. A belátható időn belül, 2032 végére várt esemény éppen a Föld felőli oldalon történhet meg, így szabad szemmel is láthatnánk, amire kb. 5000 éve nem volt példa.
Bár csak 60 méteres (vagyis kb. akkora, mint a Szent István-bazilika oldaltornyai), ez az aszteroida képes lenne egy kisebb régió vagy város elpusztítására a Földön.
A 2024. december 27-i felfedezés óta aktívan megfigyelt égitest becsapódási esélyét hónapokon át egyre magasabbra módosították a kutatók, mígnem 2025 februárjában már 3,1 százaléknál járt, amivel elnyerte a valaha felfedezett legkockázatosabb aszteroida címet. A maga műfajában extrém magasnak számító rizikó miatt a média hamar ráragasztotta a „városgyilkos” nevet, mintegy jelezve, hogy a dinoszauruszokat kiirtó „bolygógyilkos” meteorok 10-15 kilométeres átmérőjéhez képest ugyan eltörpül, de igenis jelentős veszélyforrás.
Regisztrálj, vagy lépj be, hogy tovább tudd olvasni a cikket!
Milliós fizetések és új szakmák: öt állás, amit a mesterséges intelligenciának köszönhetünk majd
A mesterséges intelligencia rohamos fejlődése nemcsak a technológiát, hanem a munkaerőpiacot is formálja. Hamarosan olyan munkákért is fizethetnek majd, amelyek ma még nem is léteznek.
A mesterséges intelligencia kapcsán legtöbbször arról hallunk, hogyan váltja ki az emberi munkát. A gyorséttermek pultjaitól és recepciós pultoktól a futárszolgálatokig és raktárakig sok szakma veszélybe került. Bár szakértők szerint nagyjából 40 állás „AI-biztosnak” számít, a lista meglepően rövid.
Az AI körül azonban nemcsak a munkahelyek megszűnése miatt vannak viták. Egyre több szó esik az adatvédelmi és a félretájékoztatási kockázatokról is – például arról, mennyire jó ötlet mindent megosztani a ChatGPT-vel.
Pedig a technológia nem csak rosszra használható. Gyorsíthatja a monoton munkát, segíthet utazást szervezni, sőt, akár virtuális terapeutaként is működhet. Ráadásul olyan, ma még nem létező állásokat hozhat létre, amelyek komoly fizetést kínálnak.
A Mediumon megjelent összeállítás szerint ez lehet az öt legígéretesebb jövőbeli AI-állás:
1. Érzelmi AI-promptmérnök
Várható éves fizetés: kb. 110 millió forint. Feladata: megtanítani a mesterséges intelligenciának az érzelmek kezelését. Egy AI-terapeutánál vagy trénernél alapelvárás, hogy empatikus és érzelmileg intelligens legyen. Ehhez olyan szakemberekre lesz szükség, akik képesek emberi tudást és érzelmi finomságot átadni a gépeknek.
2. Digitális személyiségtervező
Az AI-generált Instagram-influenszerek már most is felbukkannak, de a jövőben tervezők alkothatják meg teljes háttértörténetüket és hangjukat. Legyen szó virtuális személyi edzőről vagy online műsorvezetőről, ezek a karakterek már nemcsak a fantáziából, hanem kódokból is születnek majd.
3. Etikai algoritmusellenőr
A közösségi médiában látott személyre szabott tartalmak mögött bonyolult algoritmusok állnak. Ha ezek torz, elfogult vagy furcsa eredményeket adnak, független ellenőrök vizsgálhatják át a működésüket, és biztosíthatják a rendszer igazságosságát.
4. Szintetikus emlékek kurátora
Az AI „memóriája” – és felejtési képessége – eddig kevés figyelmet kapott. A szintetikus emlékek kurátora adatkutatási, történetmesélési és mentálhigiénés ismeretekkel alakít ki olyan AI-társakat, amelyek személyre szabott élményeket és beszélgetéseket kínálnak.
5. AI-világépítő a valóságban
A GTA fejlesztői a virtuális világok mesterei, de a jövőben tervezőknek AI-alapú, valós terek létrehozásán kell dolgozniuk. Okososztálytermek, alkalmazkodó városok, rutinokat megtanuló otthonok – a digitális világépítés kilép a képernyőről.
A mesterséges intelligencia kapcsán legtöbbször arról hallunk, hogyan váltja ki az emberi munkát. A gyorséttermek pultjaitól és recepciós pultoktól a futárszolgálatokig és raktárakig sok szakma veszélybe került. Bár szakértők szerint nagyjából 40 állás „AI-biztosnak” számít, a lista meglepően rövid.
Az AI körül azonban nemcsak a munkahelyek megszűnése miatt vannak viták. Egyre több szó esik az adatvédelmi és a félretájékoztatási kockázatokról is – például arról, mennyire jó ötlet mindent megosztani a ChatGPT-vel.
Regisztrálj, vagy lépj be, hogy tovább tudd olvasni a cikket!
Nem csak a munkát, az áramot is elveszi – Egyre fenyegetőbb az AI energiaéhsége, amit velünk fizettethetnek meg a cégek
A generatív AI térnyerésével rohamosan nő az adatközpontok villamosenergia-fogyasztása. A szakértők figyelmeztetnek: a technológiai forradalom megfelelő energiaellátás híján megtorpanhat, és mindenre hatással lehet, az energiaipartól a háztartások rezsiköltségéig.
A mesterséges intelligenciát gyakran tisztán digitális jelenségnek tekintjük, amely a bitek és algoritmusok megfoghatatlan szintjén működik, de valójában minden egyes AI-val generált kép, vagy ChatGPT-ben keletkezett válasz mögött mérhető energiafogyasztás áll. A háttérben hatalmas szerverközpontok dolgoznak, amelyek ásványi anyagokból készült chipekkel és félvezetőkkel teli számítógépparkokat működtetnek – és ehhez jelentős mennyiségű villamosenergia kell. Amennyiben tehát az AI fejlődését és terjedését vizsgáljuk, a számítástechnikai kihívások mellett figyelembe kell venni az infrastrukturális és ökológiai korlátokat is.
Bármennyire ígéretes az AI, a növekedésének van egy nagyon is kézzelfogható határa, amire Sam Altman, az OpenAI vezérigazgatója nemrég egy kongresszusi meghallgatáson világított rá. Mint mondta, „idővel a mesterséges intelligencia költsége össze fog érni az energia költségével”.
Altman a Time szerint arról is beszélt, hogy hiába válnak egyre automatizáltabbá és olcsóbbá a chipgyártási és hálózati folyamatok, egy elektron energiaigénye akkor sem lesz kisebb, vagyis a számítási feladatok fizikai energiaigénye adott, és nem csökken zéró alá. Végső soron tehát egy érett AI-gazdaságban az „intelligencia” előállításának határköltsége megközelíti az elektromosság határköltségét.
Még konkrétabban: hogy mennyi AI-t kaphatunk, „azt az energia bősége korlátozza” – magyarázta Altman.
A forradalmi AI-termékeket fejlesztő cég vezetője világossá tette: az energetikai innováció és az AI képességei között közvetlen kapcsolat keletkezik, így azok a régiók, amelyek bőségesen, megbízhatóan és olcsón tudnak energiát biztosítani, döntő előnyre tesznek szert a számítási kapacitás terén.
Energiakorlátok: lesz-e elég áram az AI-hoz?
Az, hogy az innováció egyik kulcsa az energia, már napjainkban is tetten érhető. Egyes becslések szerint csak az Egyesült Államoknak akár további 90 gigawatt teljesítményre – tehát pluszban nagyjából 60 paksi atomerőműre – lenne szükség az adatközpontok ellátásához a következő években. A City Journal szerint Altman ezért figyelmeztetett arra, hogy az energiaellátás fejlesztése a legfontosabb stratégiai beruházás. „Nem jut eszembe semmi, ami hosszú távon fontosabb lenne, mint az energia” – fogalmazott az amerikai szenátus energiaügyi bizottsága előtt.
Azok az országok vagy vállalatok tehát, amelyek képesek nagy mennyiségben tiszta energiát előállítani, lényegében meghatározzák majd, hogy mi válik lehetségessé az AI-fejlesztésben.
És Kína már most globális vezető szerepben van a megújuló energia területén, ráadásul az évtized végére a világ teljes megújuló kapacitásának közel felét birtokolhatja majd. Jól látszik, hogy az AI-verseny könnyen energiaversennyé alakulhat: az nyer, akinek több és tisztább energiája van az AI rendszerek üzemeltetésére.
És ennek hatása a mindennapokban is érezhető lesz – jósolta a BloombergNEF, Elon Muskra hivatkozva. A robotikai és AI-forradalomra készülő Tesla-vezér nyilatkozata szerint „jelenleg chiphiány van, egy év múlva transzformátorhiány, két év múlva pedig áramhiány lesz”. Mark Zuckerberg szintén tett erre utaló jelzést, amikor nemrég kijelentette: a Meta azonnal nekilátna több adatközpont építésének, ha kapna hozzá elegendő villamosenergiát.
Az adatközpontok energiaellátása már napjainkban sem egyszerű.
A világ legnagyobb adatközpontjainak otthont adó Észak-Virginiában a szerverparkok már kb. 2,5 gigawatt kapacitást kötnek le, ami a térség áramszükségletének kb. 20 százalékát jelenti, és a szakértők arra számítanak, hogy az igények évi 25 százalékkal nőnek. Pedig már 2022-ben (a ChatGPT szabadon engedése előtt) előfordult, hogy egy helyi áramszolgáltató átmenetileg kénytelen volt leállítani az új adatközpontok hálózatra kapcsolását, mert nem tudta garantálni az ellátásukat. Hasonló helyzet állt elő Írországban, ahol a Dublin környéki adatközpontok – szintén 2022-ben – felemésztették az ország teljes áramfogyasztásának 21 százalékát – szemben a 2015-ös öt százalékkal. Itt a hatóságok moratóriumot hirdettek új adatközpontok létesítésére.
A példák jól jelzik: könnyen előfordulhat, hogy a hagyományos hálózatfejlesztés nem tud lépést tartani az AI-központok energiaigényével.
Ugrásszerű növekedés indult, a tettes az AI
A mesterséges intelligencia széleskörű használata miatt az elmúlt években érezhetően megugrott az emberiség energiaigénye. A fordulópont 2020 körül érkezett el: egy évtizednyi viszonylagos stagnálás után az adatközpontok villamosenergia-igénye hirtelen növekedésnek indult, egyrészt az AI modellek szaporodása, másrészt pedig a COVID-időszak távmunkatrendje miatt. A fogyasztás meredeken emelkedni kezdett, leginkább a szerverparkok növekvő igénybevételének köszönhető.
Az amerikai Környezet- és Energiakutató Intézet becslései szerint az adatközpontok áramfelhasználása már 2022-ben elérte a 176 terawattórát az Egyesült Államokban (ami több mint kétszerese a néhány évvel korábbinak), miközben a globális adatközpontok energiafelhasználása 460 TWh lehetett. Az MIT riportja összehasonlításképpen azt írja, ha az adatközpontok önálló országot alkotnának, akkor már az AI jelentősebb térnyerése előtt, 2022-ben a világ 11. legnagyobb áramfogyasztójának számítottak volna, pedig ez sehol sincs a jelenlegi áramfelhasználáshoz képest.
A kutatók úgy számolnak, hogy az adatközpontok már 2026-ban elérik az 1050 terawattórás energiaigényt, amivel – megint csak országként kezelve – az ötödik legnagyobb felhasználóvá válnak, és Japán, illetve Oroszország közé jönnek fel a világranglistán.
Ez őrületesen gyors változás. Amerikai példával érzékeltetve: az AI-ra specializált szerverek éves fogyasztása 2017-ben még alig két terawattóra volt, 2023-ra viszont már elérte a 40 terawattórát, ami hússzoros növekedés – úgy, hogy csak a ChatGPT 2022-es megjelenését követő egyetlen év alatt megháromszorozódott az energiafelvételük.
Mit mutatnak az előrejelzések 2030-ra és 2040-re?
A fentebb írt tendencia folytatódni látszik, ami az évtized végére sokkoló mértékű energiaigényt jelez előre. A Nemzetközi Energiaügynökség (IEA) elemzése azt mutatja, hogy a globális adatközpontok villamosenergia-fogyasztása 2030-ra a jelenlegi több mint a kétszeresére nő, és eléri a 945 terawattórát.
Ez kb. 475 paksi atomerőmű, és csaknem annyi áram, mint amennyit a 125 milliós lakossággal rendelkező Japán teljes gazdasága fogyaszt.
De menjünk még tovább a belátható jövőben: a Rystad Energy nemrég közzétett előrejelzése 2040-re már közel 1800 terawattóra fogyasztást vetít előre – ez nagyjából annyi energia, amennyivel 150 millió amerikai háztartást lehetne ellátni, egy teljes éven át.
Verseny az energiaforrásokért: merre tovább?
Az előttünk álló legnagyobb kihívás az, hogy milyen energiaforrásokkal és hogyan tudjuk kielégíteni az AI által gerjesztett plusz igényt. A jelenlegi trendek alapján a villamosenergia előállításának diverzifikációjára elengedhetetlennek tűnik. Az IEA azt látja, hogy az adatközpontok növekvő áramszükségletét számos forrásból fedezheti a világ, és ebben főszerepet játszhat a szél- és napenergia mellett a földgáz is, hiszen ezek költséghatékonysága és elérhetősége igen kedvező a kulcspiacokon. Fontos megjegyezni ugyanakkor, hogy a megújulók termelése még mindig erősen időjárásfüggő, így sokan fordulhatnak majd az atomenergia felé.
A Goldman Sachs elemzői ezzel kapcsolatban azt írják, hogy 2030-ig globálisan 85–90 GW új nukleáris kapacitásra lenne szükség ahhoz, hogy az adatközpontok várható többletigényét teljes mértékben atomenergiával fedezzük. Reálisan azonban ennek csak a töredéke épül meg: a riport szerint világszinten a szükséges atomkapacitás kevesebb mint tíz százaléka áll majd rendelkezésre az évtized végére.
Ennek oka az, hogy bár az atomenergia megbízható és közel zéró kibocsátású, az új erőművek létesítése időigényes és drága.
Rövid távon tehát valóban a földgáz és a megújulók kombinációja töltheti be a tátongó űrt. Egy iparági felmérés kimutatta: megfelelő energiatárolással (vagyis akkumulátorokkal kiegészítve) a szél- és napenergia egy adatközpont igényének 80 százalékát is fedezheti, viszont a fennmaradó időre (amikor például nem süt a nap vagy szélcsend van) hagyományos energiaforrásokra van szükség a folyamatos ellátáshoz.
A jelenlegi trend azt mutatja, hogy sok új adatközpont – főleg Ázsiában és Észak-Amerikában –földgáztüzelésű erőművekhez csatlakozik, mivel ezek tudják azonnal kiszolgálni a gyorsan növekvő igényeket. A hagyományos megoldásnak ugyanakkor ára van: ha a globális adatközpont-kapacitás bővülését 60 százalékban földgázerőművek biztosítják, az évente további 215 millió tonna karbonkibocsátást jelentene 2030-ra, ezzel a világ energiaipari emissziójának kb. 0,6 százalékát adná.
Sorra vásárolják fel az atomenergia-kapacitásokat
A techcégek felismerték a helyzet komolyságát, és már most jelentős lépéseket tesznek az energiaellátás biztonságáért. A legnagyobb felhőszolgáltatók (mint a Google, az Amazon, a Microsoft vagy a Meta) a világ legnagyobb zöldenergia-vásárlói közé léptek: összesen több mint 70 gigawatt kapacitásra kötöttek hosszú távú áramvásárlási szerződéseket. A BloombergNEF szerint az is jól látható trend, hogy a tiszta, folyamatos ellátás reményében a vállalatok újra az atomenergia felé fordulnak.
A Microsoft például nemrég szerződött a hírhedt (1979-ben súlyos reaktorbalesetet szenvedett, majd 1985-2019-ig működő) Three Mile Island atomerőmű 2027-28-as újraindítására, hogy aztán a teljes termelését az adatközpontjai üzemeltetésére fordítsa, míg az Amazon 2023-ban úgy, ahogy van, megvette egy pennsylvaniai atomerőmű melletti adatközpont teljes kapacitását, a Google pedig rendelt hét darab kis moduláris reaktort.
A technológiai szektor tehát korábban nem látott mértékben invesztál az energiatermelésbe, viszont akadályokba ütközik a szabályozó hatóságok szintjén, mivel azok nem feltétlenül nézik jó szemmel, hogy milyen biztonsági feltételek mellett és mennyi kapacitást foglalnak be, illetve ezzel milyen hatást gyakorolnak az áram piaci árára.
A hosszabb távú megoldást sokan a technológiai áttörésektől remélik. Az összes energiaforrás turbófokozatra kapcsolása mellett megjelent az igény az innovációra, így a fúziós energia ígérete is egyre többeket vonz. Altman személyesen is befektetett például a Helion nevű fúziós startupba, amellyel a Microsoft ugyancsak megállapodást kötött. Ez a cég 2028-ra ígéri, hogy az első kísérleti fúziós erőműve már képes lesz áramot termelni.
Az AI energiafogyasztását a lakossággal és a kisfogyasztókkal fizettethetik meg
Az energiaigény növekedése – amennyiben a kínálat nem tart lépést az igényekkel – óhatatlanul az árak emelkedéséhez vezet. Az Egyesült Államok Elnöki Hivatalának Gazdasági Tanácsa (CEA) nemrég kiszámolta: ha nem történik kellő volumenű beruházás az energiatermelésbe, 2030-ra az áramárak 9–58 százalékkal nőnek a megnövekedett kereslet miatt. Ez a Fox Business elemzése alapján minden fogyasztót érinteni fog.
A kiemelkedően sok áramot használó vállalatok – mint az AI-központok – mindazonáltal szintén magasabb díjat fizethetnek majd, hogy finanszírozzák a hálózatfejlesztést, de ezeket a plusz terheket aligha akarják benyelni. Félő, hogy a vállalatok megemelkedett költségei rejtve maradnak vagy szétterülnek, és végső soron a háztartások és kisfogyasztók viselik majd az AI energiaéhségének terheit. Mark Wolfe, az amerikai Nemzeti Energiatámogató Igazgatók Szövetségének ügyvezetője a CBS Newsnak azt mondta, „a szolgáltatók versenyt futnak az egekbe szökő AI- és felhőigények kielégítéséért, ezért új infrastruktúrát építenek majd és emelik a díjakat – gyakran bármiféle átláthatóság és lakossági beleszólás nélkül.
Ez magasabb villanyszámlát jelent a hétköznapi háztartásoknak, míg a techcégek jól járnak a zárt ajtók mögött nyélbe ütött kedvezményes alkukkal.”
A következő években tehát várhatóan nőni fog az energiaár a mesterséges intelligencia térnyerése miatt, akár közvetlenül (a felhőszolgáltatások drágulása révén), akár közvetetten (a villamosenergia árában realizálódva). Ebbe az irányba mutat az is, hogy sok vállalat már most jelentős összegeket költ AI-infrastruktúrára: a City Journal szerint a legnagyobb tech cégek 2023-ban kb. 300 milliárd dollárt fordítottak AI-adatközpontokra világszerte, és ez az összeg 2030-ra elérheti az évi ezermilliárd dollárt is. És minden 100 milliárd dollárnyi új adatközpont-beruházás nagyjából ugyanekkora összegű energiaszámlát jelent évtizedes távlatban. Ebből világosan kitűnik, hogy az energiaköltség az AI költségének meghatározó elemévé válik.
Az energia-infrastruktúra gyors bővítése rengeteg pénzbe kerül, amit végső soron a fogyasztók és az adófizetők állhatnak.
Ha az AI miatt trillió dolláros nagyságrendben kell beruházni új erőművekbe és hálózatfejlesztésbe, az valószínűleg megjelenik az adókban vagy az energiaárakban. Ezáltal joggal merül fel az aggodalom, hogy a cechet a háztartások fizetik meg, miközben a hasznot a nagy technológiai cégek fölözik le. A társadalmi igazságosság szempontjából kérdés, hogy helyes-e az általános energiaár-emelkedés terhére kielégíteni az AI energiaigényét. További aggály, hogy az energiaellátás javára esetleg más területektől (pl. oktatás, egészségügy) vonnak el erőforrásokat – legalábbis abban az esetben, ha a kormányok mindent az energiabővítésnek rendelnek alá.
Mit érzékelnek a felhasználók az AI energiaéhségéből?
Jelenleg szinte semmit. Amikor valaki beír egy kérdést a ChatGPT-be, nem látja, hogy a válasz mögött mennyi áram ég el – és az átlagfelhasználó erre nem is gondol. Pedig egy MIT-kutatás szerint egy ChatGPT-lekérdezés nagyjából ötször több elektromos energiát használ el, mint egy egyszerű Google-keresés. A különbség oka az, hogy az AI-modell párhuzamos számításokat végez a válasz generálásához, ami több processzort és ezáltal több energiát mozgat meg. Ez ugyanakkor a háttérben történik, így a felhasználó ugyanúgy egy pár másodperces választ lát a képernyőn, mintha csak egy keresést indított volna. Az energiafogyasztás ezen a szinten tehát rejtve marad.
Közvetetten azonban a felhasználók is találkozhatnak az AI energiaéhségének hatásaival. Ahogy fentebb fejtegettük, a villanyszámlák emelkedése vagy az energiaszolgáltatók új díjszabásai mögött részben az áll, hogy ki kell szolgálni az adatközpontok igényeit. Ha az energiaárak jelentősen nőnek, az hat a gazdaság minden területére – így a digitális szolgáltatások beárazására is. Elképzelhető tehát, hogy idővel az ingyenesen vagy olcsón használt AI-alkalmazások díjkötelessé válnak vagy drágulnak, hogy a szolgáltatók fedezni tudják az energiaköltségeket.
A nagy technológiai cégek üzleti modelljében eddig gyakran elveszett az AI- és felhőszolgáltatások költsége, de ha tovább nő, előbb-utóbb megjelenik a felhasználói oldalon.
David Cahn, a Sequoia Capital partnere kiszámolta, hogy a nagy AI-beruházások megtérüléséhez globális szinten akár évi 600 milliárd dollárnyi bevételt kellene termelni az AI-szolgáltatásokból – ami fejenként nagyjából 600 dolláros (több mint 200 ezer forintos) éves kiadást jelentene az egymilliárd legjobban kapcsolódó felhasználó számára.
Az energiakínálat bővítése és az energia-infrastruktúra fejlesztése tehát nem pusztán az AI energiaéhségének kiszolgálása, hanem befektetés is a jövőbe. Ha sikerül fenntartható módon kielégíteni a növekvő energiaigényt, az megalapozza a mesterséges intelligencia további fejlődését és az abból származó előnyöket. Az emberiség olyan produktivitási és innovációs ugrást érhet el, ami felgyorsíthatja a gazdasági növekedést és számos problémára megoldást kínálhat. A technológia egyik legígéretesebb hozadéka összességében a nagyarányú termelékenységnövekedés lehet – ami minden gazdaságban a hosszú távú jólét kulcsa.
A mesterséges intelligenciát gyakran tisztán digitális jelenségnek tekintjük, amely a bitek és algoritmusok megfoghatatlan szintjén működik, de valójában minden egyes AI-val generált kép, vagy ChatGPT-ben keletkezett válasz mögött mérhető energiafogyasztás áll. A háttérben hatalmas szerverközpontok dolgoznak, amelyek ásványi anyagokból készült chipekkel és félvezetőkkel teli számítógépparkokat működtetnek – és ehhez jelentős mennyiségű villamosenergia kell. Amennyiben tehát az AI fejlődését és terjedését vizsgáljuk, a számítástechnikai kihívások mellett figyelembe kell venni az infrastrukturális és ökológiai korlátokat is.
Bármennyire ígéretes az AI, a növekedésének van egy nagyon is kézzelfogható határa, amire Sam Altman, az OpenAI vezérigazgatója nemrég egy kongresszusi meghallgatáson világított rá. Mint mondta, „idővel a mesterséges intelligencia költsége össze fog érni az energia költségével”.
Regisztrálj, vagy lépj be, hogy tovább tudd olvasni a cikket!
Konténerekbe pakolják a hordozható atomerőművet – Magyarország is a kis reaktorok felé fordul
Hiú ábránd azt várni a kis moduláris reaktoroktól, hogy kiváltják a leszereléséhez közeledő Paks I-et, vagy az egyre csúszó Paks II projektet. Az SMR-ek ettől függetlenül ígéretesek, és hazánk csatlakozna is az új trendhez, a lengyelek viszont máris beelőztek minket.
A BWX Technologies virginiai üzemének egyik csarnokában különleges atomreaktor készül. A vállalat itt kezdte meg a Pele mikroreaktor reaktormagjának gyártását, 2025 nyarán. Ez a mindössze 1,5 megawatt teljesítményű kísérleti reaktor az Egyesült Államok Védelmi Minisztériumának megrendelésére készül, és várhatóan 2028-ban kezdi meg az áramtermelést.
Különlegessége, hogy gázhűtéses és szállítható: minden rendszerével együtt belefér négy darab, egyenként 6 méter hosszú szállítókonténerbe.
Ez a „zsebatomerőmű” előretolt katonai támaszpontokra vagy más létesítményekbe is elszállítható, hogy utántöltés nélkül akár három éven át megbízhatóan termelje az áramot, még extrém körülmények között is – állítja a gyártó.
A Pele reaktort egy speciális üzemanyag, az ún. TRISO fogja működtetni, ami magas tisztaságú, alacsonyan dúsított uránból készül, extrém hőt is elvisel, miközben minimális környezeti kockázatot jelent.
A projekt a BWXT mellett több ipari partner részvételével valósul meg. Az ikonikus brit gépgyártó, a Rolls-Royce az indianapolisi LibertyWorks létesítményében fejleszti a mikroreaktor energiakonverziós modulját, amely kulcsfontosságú a rendszer megbízható áramtermeléséhez, de dolgoznak a programon az űr- és hadiipari Northrop Grumman szakemberei is, akik a reaktor vezérlőmodulját biztosítják.
#News: New innovations, new nuclear, new opportunities for our future: Work has commenced to fabricate the reactor core of Project Pele! This microreactor technology is expected to begin producing electricity in 2028.
A szállítható mikroreaktorok legnagyobb előnye, hogy még szélsőséges körülmények között is képesek áramot biztosítani. Bár a fejlesztés tempóját leginkább a hadiipar diktálja, a rendszer polgári célokra is kiválóan alkalmas lehet, például katasztrófaelhárításban vagy távoli térségek energiaellátásában.
Nem csoda, hogy az SMR-ek iránt olyan államok is érdeklődnek, mint Magyarország, ahol a legtöbb áramot egy régi, meghosszabbított élettartamú, de végső leszereléséhez közelítő atomerőmű biztosítja, miközben az új létesítmény, a Paks II. építése óriási csúszásokkal küzd, és egyelőre senki nem tudja biztosan megmondani, hogy mikorra készülhet el.
És akkor még nem került szóba a Paks I-ben üzemelő szovjet reaktorok leállítása, ami ugyancsak elképesztően nagy összegeket emészt majd fel. Hogy mekkora nagyságrendről van szó, arra remek példa lehet északi szomszédunk, Szlovákia, ahol az Európai Újjáépítési és Fejlesztési Bank beszámolója szerint nemrég százmillió eurós (kb. 40 milliárd forintos) projekt keretében szereltek le két darab VVER-440-es nyomottvizes reaktort – ugyanolyanokat, amelyekből Pakson éppen négy van.
A régi reaktorok leállítása, illetve Paks II befejezésének bizonytalan határideje miatt a magyar kormány is felszáll az SMR-vonatra, amit egy nyáron kötött megállapodás keretében szentesítettek. Az már más kérdés, hogy ez a – hangsúlyosan kísérleti – technológia tényleg lehet-e érdemi része az energiamixnek, pláne úgy, hogy a működése kapcsán egyelőre nem rendelkezünk tapasztalatokkal.
Mit tudnak a kisméretű moduláris reaktorok?
Először is: lényegesen kisebbek a hagyományos atomerőművi blokkoknál. Míg egy négyesblokkos nagy atomerőmű több ezer megawattos kapacitást nyújt, addig egyetlen SMR modul teljesítménye legfeljebb 300 MW körül lesz. A kisebb méret és a moduláris kialakítás számos előnyt ígér – ebből hazai szempontból valószínűleg az a legfontosabb, hogy az előregyártott reaktormodulok miatt az építési idő évtizedes nagyságrendről akár 2-4 évre csökkenthető.
Összehasonlításképpen: a Paks II projekt 2014-ben indult, és a reaktoroknak 2025-2026-ra már üzemi állapotba kellett volna kerülniük, de ott tartunk, hogy a kivitelező orosz Roszatom 2025-ben még el sem kezdte az építésüket.
Egy SMR-beruházás gyorsabban megtérül, a finanszírozási kockázatai pedig alacsonyabbak, mint egy nagy atomerőmű esetében, ráadásul kompakt reaktorokról van szó: nemcsak villamosenergiát, hanem ipari vagy lakossági célú hőt, mi több, akár zöld hidrogént is előállíthatnak. Aszódi Attila, a BME nukleáris szakértője erről azt mondta az Indexnek, hogy a modul „flexibilisen változtatva az egyes termékekre fordított energia arányát” képes váltogatni a különböző felhasználási igények kiszolgálására.
Bár az SMR-eket sokan a jövő energiatermelésének ígéretével azonosítják, a technológia egyelőre legfeljebb prototípus fázisban létezik. Világszerte 80 különböző SMR-koncepció fejlesztése zajlik, de eddig a napig csupán két ilyen reaktort indítottak be. Az egyik orosz, és 2020 óta egy északi-sarki kikötő települést lát el árammal, míg a másik kínai: 2023 óta termel energiát a Shidao-öbölben.
Ezen a ponton lényeges kiemelni, hogy ugyan úttörő példákról van szó, aligha kövezik ki az SMR útját a széles körű felhasználás felé. Első hullámban a hagyományos, könnyűvíz-hűtésű technológiára építő, kb. 300 MW teljesítményű moduláris reaktorok terjedhetnek el. És az első európai példány már biztosan nem Magyarországon épül fel.
A lengyelek kanyarban előznek
„Lengyelország ad majd otthont Európa első BWRX-300 kis moduláris reaktorának” – közölte Ireneusz Fąfara, az úttörő reaktor megépítésére a szintén lengyel Synthos Green Energy-vel szerződő ORLEN igazgatótanácsának elnöke. Az együttműködést augusztus végén jelentették be, azzal, hogy „közvetlen hozzáférését” kapnak az amerikai SMR-technológiához. A két vállalat 50-50 százalékban osztozik az új reaktor tulajdonjogán, amelyből 2035-ig kettőt akarnak üzembe helyezni, 600 MW teljesítménnyel.
A lengyelek, egyben a kontinens minden bizonnyal első kereskedelmi célú áramot termelő SMR-jét a Visztula partján fekvő Włocławek városában telepítik. Az Euronews úgy tudja, hogy ez csak az első a sorban, hiszen a brutálisan nagy szénfogyasztó ország (2019-ben ők fűtötték el az Európai Unió háztartásaiban felhasznált szén 87 százalékát) mindent megtesz a karbonkibocsátás csökkentéséért.
Nem véletlen, hogy hosszú távon 24 darab SMR-t akarnak telepíteni, összesen 7200 MW teljesítménnyel, ami több mint 3,5-szerese Paks I. teljesítményének.
Az első beruházás az Egyesült Államokban kifejlesztett BWRX-300 licencén alapul, amit a GE Vernova fejleszt és a világ egyik legfejlettebb SMR-technológiájának tartanak. A vállalatnál a Synthos Green Energy-n keresztül kopogtat a magyar külgazdasági és külügyminiszter is. Szijjártó Péter július végén jelentette be, hogy a Paks II. vállalatcsoport nukleáris technológiai fejlesztésekkel foglalkozó cége, a Hunatom megállapodást kötött az amerikai moduláris atomerőművi technológia hazai bevezetésének előkészítéséről.
A HVG a tervvel kapcsolatban emlékeztet: a GE Vernova a GE Hitachi Nuclear Energy nevű leányán keresztül érdekelt az SMR-ek fejlesztésében, és a világon elsőként, Kanadában szerzett engedélyt egy ilyen blokk létesítésére.
At BWXT in Canada, we manufacture complex nuclear components, like fuel bundles, to help power the province of Ontario.
Magyarország persze ezt megelőzően is többször állást foglalt az SMR-ek mellett: januárban az Egyesült Királysággal állapodtunk meg stratégiai együttműködésről az SMR-ek mielőbbi bevonása érdekében, míg márciusban az amerikai Westinghouse-szal. Utóbbi cégről Szijjártó azt posztolta, „a nukleáris technológiák világpiacán a vezető vállalatok közé tartozik, és fontos szerepet játszhat abban az áttörésben, amely a rövidebb idő alatt megépíthető kis moduláris atomerőművek létrehozására irányul”.
A paksi bővítés elhúzódása és a növekvő áramszükséglet miatt a közeljövőben Magyarországnak új, alacsony kibocsátású áramforrásokra lesz szüksége. A külügyminiszter pedig rámutatott, hogy „egy Magyarország méretű ország számára nem reális több új nagy atomerőmű egymásutáni létesítése, a kis moduláris reaktorok viszont jó megoldást jelenthetnek”.
Ezzel egybecseng Lantos Csaba energiaügyi miniszter 2023-as nyilatkozata, amelyben kiemelte, hogy várhatóan legalább egy SMR-blokk beszerzésére szükségünk lesz, és ez optimális esetben 2029–2030 körül történhet meg. Aszódi Attila kijelentette: ezt az időkeretet ő is reálisnak tartja, mindazonáltal az, hogy Magyarországon valóban működhessenek moduláris reaktorok, még több akadályt el kell hárítani. Első lépésként a nukleáris biztonsági szabályozás átfogó átalakítására van szükség, hogy egy SMR-típus hazai engedélyeztetése egyáltalán lehetővé váljon.
Ezenfelül egy SMR-blokk építésének előkészítéséhez a hatályos atomtörvény szerint az országgyűlés elvi hozzájárulása is kell; továbbá ki kell választani a reaktortípust, biztosítani a finanszírozást, és kijelölni a telephelyet, majd el kell végezni annak részletes geológiai és biztonsági felmérését.
Verseny dúl a legjobb SMR-ek fejlesztéséért, de jobb óvatosnak lenni
Számos iparvállalat és startup versenyez, hogy minél jobb SMR-t építsen és elnyerje a technológia iránt érdeklődő államok, illetve persze a hadiipar bizalmát. Az Egyesült Királyságban a Rolls-Royce egy a GE Vernova reaktoránál nagyobb, már a paksi blokkok egyikének teljesítményével vetekedő, 470 MW-os SMR terveire kapott állami és magántőkét. A cég azt reméli, hogy világvezetővé válhat ezen a területen, de nem lesz könnyű dolga – még otthon, Nagy-Britanniában sem.
A The Guardian szerint a brit ipari programban a Rolls-Royce mellett amerikai (és kanadai hátterű) konkurensek is sorban állnak, köztük a Holtec, valamint a fentebb írt GE Hitachi és Westinghouse, amelyek szintén esélyesek állami támogatásra a szigetországban.
Az Egyesült Államokban eközben bukott projektet is találunk, ami intő példa lehet.
A NuScale SMR-terve sokáig tűnt befutónak, hiszen megkapta az amerikai Nukleáris Szabályozó Hatóság (NRC) tervezési engedélyét, kisebb teljesítményű, kb. 77 MW-os modulokra, amelyek egyenként 60 ezer háztartás ellátására lehetnek alkalmasak. Az első ilyen erőművet Idaho Fallsban akarták megépíteni, de úgy elszálltak a költségek és a várható megawattóránkénti ár, hogy törölni kellett az ambiciózus tervet.
Az SMR-ekkel kapcsolatos optimizmus mellett tehát érdemes óvatosnak is lenni. A The Economist elemzése alapján a következő 5-10 év dönti el az SMR-ek sorsát. A lap felhívja a figyelmet arra, hogy csak kevés kisebb reaktor tervezése van üzembevételi fázisban 2030-ig, ám az ütemezést könnyen késleltethetik a költségtúllépések, az engedélyezési procedúrák elhúzódása vagy épp az üzemanyag-ellátási nehézségek.
„A nukleáris ipar ígéreteit a kormány egészében véve készpénznek veszi – bátor vagy éppen vakmerő lépés, tekintve, hogy nem épült még egyetlen ilyen reaktor sem, és a nukleáris ipar késéseinek és túlköltéseinek rekordja párját ritkítja” – figyelmeztetett Dr. Doug Parr, a Greenpeace UK szakértője.
Ahogy a szakértők is kiemelik: az SMR-technológia életképességét még igazolni kell, így a következő években derül majd ki, hogy az első kísérleti reaktorok valóban képesek-e tartani a tervezett ütemezést, majd beváltani a hozzájuk fűzött reményeket.
Amennyiben a jogi és műszaki előkészítés sikerrel zárul, maga a kivitelezés már tényleg gyors és olcsó lehet. Egy sorozatban gyártott SMR blokkjainak moduljait a gyárban szerelik össze, így a helyszínen csak össze kell illeszteni őket. A gyors (ahogy fent írtuk: 2-4 éves) megvalósíthatóság a költségek és kockázatok leszorítását is jelenti, így a kis atomerőművek – sikeres nemzetközi példák esetén – valóban versenyképes alternatívává válhatnak a fosszilis erőművekkel szemben.
Mindent egybevetve az SMR-ek a nukleáris ipar egyik legizgalmasabb irányát képviselik. Az Egyesült Államokban 2028-ban már szolgálatba állhat az első mikroreaktor az amerikai hadsereg előretolt bázisainak áramellátására, sőt a válságkezelés és a távoli települések ellátása terén is bevethetik majd ezeket a hordozható mini atomerőműveket.
Ha a tapasztalatok kedvezőek lesznek, a civil energiaszektor ugyancsak profitálhat az SMR-ekből - főleg az energiát az AI-technológia miatt egyre mohóbban zabáló adatközpontok ellátása kapcsán. A következő évtizedben Magyarországon is működésbe léphet az első moduláris reaktorblokk, amellyel hazánk legalább részben kiválthatja a fosszilis termelést és javíthatja az energiaellátása biztonságát.
A BWX Technologies virginiai üzemének egyik csarnokában különleges atomreaktor készül. A vállalat itt kezdte meg a Pele mikroreaktor reaktormagjának gyártását, 2025 nyarán. Ez a mindössze 1,5 megawatt teljesítményű kísérleti reaktor az Egyesült Államok Védelmi Minisztériumának megrendelésére készül, és várhatóan 2028-ban kezdi meg az áramtermelést.
Különlegessége, hogy gázhűtéses és szállítható: minden rendszerével együtt belefér négy darab, egyenként 6 méter hosszú szállítókonténerbe.
Ez a „zsebatomerőmű” előretolt katonai támaszpontokra vagy más létesítményekbe is elszállítható, hogy utántöltés nélkül akár három éven át megbízhatóan termelje az áramot, még extrém körülmények között is – állítja a gyártó.
Regisztrálj, vagy lépj be, hogy tovább tudd olvasni a cikket!