TUDOMÁNY
A Rovatból

Az oltásellenesek legfőbb érvének cáfolata: évtizedes kutatások vezettek az mRNS vakcinákhoz

A koronavírus elleni védőoltás csak látszólag készült el gyorsan. A New York Times összeszedte, mennyi tudós dolgozott évtizedeken át azokon az építőkockákon, amelyekből végül összeállt a megoldás.


Azok, akik a mai napig nem hajlandóak beoltatni magukat, a legtöbbször azt hangsúlyozzák, hogy gyanúsan gyorsan lett kész a koronavírus elleni vakcina, ami számukra azt jeleneti, hogy nem lehet megbízható.

Bár a Pfizer-BioNTech és a Moderna valóban a járvány kirobbanása után alig egy évvel piacra dobhatta az oltását, az ide vezető út egyáltalán nem volt rövid, és nem is akkor kezdődött, amikor a világ tudósai tudomást szereztek a Covid-19-ről. Az elmúlt évtizedekben a világ különböző pontjain végzett, egymástól független kutatási előzmények kellettek a sikerhez. Bár azt senki sem tudhatta, hogy a saját kutatása egyszer pont a koronavírus-járvány leküzdésében segít majd, a tudósoknak nem a nulláról kellett elindulniuk az ellenszer keresésekor.

A New York Times egy rendkívül részletes cikkben szedte össze, hogy milyen kísérletek és mennyi véletlen segített a megoldáshoz.

A történetből kiderül, hogy sokáig jelentéktelennek tűnő kutatásokról derült ki utólag, hogy nagyon is fontosak, olyan tudósok munkái kamatoztak, akik azelőtt évekig hiába könyörögtek pénzért, és akik gyakran félbe is hagyták kísérleteiket. De a szálak végül is találkoztak.

Az első lépés az volt, amikor 1960 áprilisában egy cambridge-i kutatócsoport, köztük két leendő Nobel-dijas, Francis Crick és Sidney Brenner, felfedezték a hírvívő RNS-t (mRNS) génmolekulát, amely segít a sejteknek proteint termelni.

A felfedezés után azonban sokáig semmi sem történ, mert a molekulát nehéz volt izolálni, ha megpróbálták, szétesett. 40 évvel később, 1998-ban a pennsylvaniai egyetem egyik fénymásolója előtt futott össze két tudós: Drew Weissmann, aki korábban a HIV-programban dolgozott és Karikó Katalin, aki Szegedről került Amerikába.

Karikót szenvedélyesen érdekelte az mRNS. Biztos volt benne, hogy áttörést hozhat az orvostudományban. A hagyományos oltások módosult vírusokat, vagy azok elemeit vitték be a testbe, hogy az immunrendszert a támadók ellen edzzék. Az mRNS-vakcina azonban olyan kódolt istrukciókat szállít, amelyek lehetővé teszik az emberi sejtek saját vírusproteineket termeljenek ki. Weissman és Karikó Katalin úgy gondolták, hogy így jobban utánozhatnák a valóságos fertőzést, és határozottabb immunválaszt válthatnának ki. Az mRNS törékenysége miatt azonban kevesen hittek abban, hogy valóban alkalmas lehet vakcina előállítására.

A két kutató mRNS-molekulákat adott hozzá petri-csészékben tenyésztett emberi sejtekhez, és mint az várható volt, az mNRS utasítására a sejtek különleges proteineket termeltek. De amikor az mRNS-t egerekbe fecskendezték, az állatok megbetegedtek.

Hét éven át tanulmányozták az mRNS működését, és számos kísérletük kudarcot vallott. Az állatok immunrendszere ugyanis az mRNS-t támadó kórokozónak érzékelte, ezért elpusztította, és az állatok ebbe belebetegedtek. Aztán rájöttek, hogy a sejtek egy különleges kémiai módosulással védik a saját mRNS-üket. Így az mRNS kisebb módosításával próbálkoztak, mielőtt azt beinjekciózták volt a sejtekbe. Ez működött: az mRNS-t immunválasz nélkül fogadták be a sejtek.

Karikó Katalin és Drew Weissman 2005-ben írtak eredményeikről tanulmányt, de az olyan tekintélyes szaklapok, mint a Nature vagy a Science, kategorikusan elutasították, csak a kevésbé ismert Immunity-ben jelenhetett meg.

A negatív visszhangok ellenére mindketten hittek abban, hogy felfedezésük egyszer megváltoztatja a világot.

Immár tudták, hogyan védjék meg a sejtbe került mRNS-t, de ahhoz, hogy oltásként vagy gyógyszerként működjön, e törékeny molekuláknak valami védőpajzsra volt szükségük a véráramlatban, hogy megakadályozzák lebomlásukat, miközben a sejtek felé tartanak.

És itt kapcsolódott be a második szál. Egy vancouveri biokémikus csapat évek óta azon dolgozott, hogy miként lehet a génmolekulákat biztonságosan az emberi sejtekhez szállítani.

Vezetőjük, Pieter Cullis fő kutatási területe a lipidek, a sejthártyák alapját képező zsírsav-tartalmú szerves anyagok voltak. Ezek borítják be a test valamennyi sejtjét. Cullis doktor azzal kísérletezett, hogy olyan lipidhártyákat tervez, amelyek a génanyagot „becsomagolva” viszik a sejtekbe. Nehéz dolga volt: egyrészt a kísérleti zsírgömbök mérete a sejtek 1% volt, másrészt pedig az emberi sejteknek olyan kifinomult védelmi rendszere van, hogy a tápálékon kívül semmit sem engednek be. Ráadásul egyes lipidfajták igen mérgezőek voltak és olyan elektromos töltéssel rendelkeztek, amelyek széttéphették volna a sejthártyákat. A nagy áttörést az hozta meg, hogy a zsírgolyók pozitív töltetét DNS-módosításnak vetették alá, az így a mérgező hatással együtt eltűnt, amikor bekerült a véráramlatba.

Mivel nem volt elég érdeklődés az eljárás iránt, Cullis eladta a lipid-technológia licenszét egy Protiva nevű cégnek, amely Ian MacLachlan biokémikus vezetésével 2004-ben oly módon burkolta be zsírrétegbe a génanyagot, hogy a gyógyszercégek növelhessék termelésüket, és megváltoztatta a lipidanyagot, hogy kevesebb vesszen el az értékes anyagból. Miután Karikó Katalin úgy látta, hogy ezek döntő fontosságúak lehetnek az mRNS-alapú gyógyszerekhez, megpróbálta meggyőzni MacLachlant, hogy dolgozzanak együtt. Ez azonban üzleti, illetve a szellemi tulajdon körüli jogi nézeteltérések miatt meghiúsult.

A harmadik kulcsmomentum 1996-ban kezdődött, amikor a Clinton-kormányzat ugyancsak több milliárd dollárt áldozott a 15 év alatt világszerte 6 millió halálos áldozatot követelő AIDS-et okozó HIV-vírus elleni oltás előállítására.

Bill Clinton az Ovális Irodában kérdőre vonta Dr. Anthony Faucit, aki már akkor is az amerikai elnök egészségügyi főtanácsadója volt, hogy másfél évtized alatt miért nem sikerült egy vakcinát összehozniuk. Fauci azt felelte, hogy hiányzik a tudósok közti koordináció. Öt hónappal később Clinton bejelentette egy vakcinakutató központ létrehozását, amely végül 2000-ben nyílt meg Bethesdában.

A kutatók itt megpróbálták a sejteket támadó HIV-vírusok tüskéit célbavenni, és beazonosítani az antitestekre legérzékenyebb pontjait. Bár a HIV-oltás nem sikerült, többek között azért, mert a vírus tüskéje más alakot ölt támadás előtt és alatt, de a program néhány résztvevője, köztük dr.Graham, aki éppen az AIDS-betegekkel való találkozásai nyomán szakosodott a virológiára, rájött néhány titokra, amelyek alapján fel lehetett térképezni a koronavírusok tüskéit.

2008-ban csatlakozott egy Jason McLellan nevű fiatal orvos Grahamhez, aki akkor már az elsősorban kisgyermekekre életveszélyes emberi légúti óriássejtes vírust (RSV) tanulmányozta, és együtt megtalálták azt a proteint, amely a jelenleg klinikai tesztelés alatt álló oltások alapja lett. Amikor McLellan 2013-ban saját laboratóriumának megnyitására készült Dartmouth-ban, Graham azt tanácsolta neki, hogy a koronavírusokat állítsa a kutatások középpontjába. Korábban ezeknek nem sok figyelmet szenteltek sem a kutatók, sem a befektetők, mivel azonban terjedőben volt a MERS, 11 évvel korábban pedig Dél-Kínában felbukkant a szintén gyilkos SARS, ezúttal másképp történt.

A MERS, mint minden koronavírus, emlékeztetett a HIV alakváltoztató proteinjeinek felszínen lévő tüskéire. Ellenállt minden oltáskísérletnek, rendkívül nehéz volt reprodukálni és laboratóriumban izolálni. Ráadásul nagyon nehéz volt mintát szerezni a közel-keleti fertőzöttektől, miután éveken át a nyugati tudósok helyi kollégáik kizárásával kutattak a szegény országokban, kormányaik védeni kezdték saját mintáikat. Ekkor tért vissza Mekkából Graham munkatársa, aki a jóval ártalmatlanabb HKU1-nek elnevezett koronavírustól fertőződött meg, ennek tanulmányozásából azonban fontos következtetéseket vonhattak le a veszélyesebb fajtákról is.

A csapat 2016-ban a Nature-ben publikálta a HKU1 tüskéjéről készült fotókat. Ekkor tették első ízben láthatóvá egy emberi koronavírus proteintüskéjét kezdeti formájában, mielőtt behatol a sejtekbe.

A feladat ezután az volt, hogy olyan stabil, alakját nem változtató tüskét hozzanak létre laboratóriumban, amely alkalmas oltás kifejlesztésére. Ebben fontos szerep jutott a Dartmouth-ba érkezett kínai posztdoktori ösztöndíjasnak, Nianshuang Wangnak, aki úgy vélte, hogy a SARS és MERS egy súlyosabb koronavírus-járvány előjátékai voltak. Ők kapta azt a feladatot, hogy nyugalmi állapotba hozza a MERS tüskeproteinjeit. Két sikertelen kísérlet után a harmadik megközelítés lett eredményes, de mivel 2017-ben a MERS-nek már régen vége volt, Wang tanulmányát elutasították a legtekintélyesebb szaklapok, az eljárás is csak a szabadalmi kérelemig jutott el.

Három évvel később azonban McLellan új, egy gyógyszercégnek dolgozó austini laboratóriumában elővehette felfedezését a koronavírus-vakcina előállításához.

McLellant dr. Graham riasztotta 2019. december 31-én a Vuhanból érkezett hírekkel. Azonnal munkához láttak, néhány nap alatt elkészült a covid-19 vírus tüskéinek génszekvenciája és február 15-én már közzétették a struktúrájukról és a rögzítési technikáról szóló tanulmányukat.

Ez utóbbi döntő jelentőségű volt a BioNTech és a Moderna mRNS-vakcináinak előállításához.

Miután tudósaik megkapták a tüske génszekvenciáját, szintetizálták az mRNS-molekulákat azzal az eljárással, amelyet Karikó Katalin és Drew Weissmann 15 évvel korábban kikísérletezett.

A molekulákat bevonták védő zsírréteggel, ahogy azt a vancouveri kutatók megálmodták és a tiszta folyadékot kis üvegfiolákba öntötték. Hamarosan megkezdődhettek az embereken való tesztelések.

Novemberben tették közzé az első eredményeket a Pfizer-BioNTech vakcina tesztjéről, amely 95%-os hatékonyságot mutatott.

Itt értek a csúcsra évtizedek alapvető felfedezései, amelyeket sokáig érdektelennek találtak. A fáradhatatlanul dolgozó kutatók, miközben hatalmas lépéseket tettek előre a maguk területén, nem tudhatták biztosan, hogy megéri-e a sok erőfeszítés. Ha az mRNS alapú, covid elleni vakcinák hosszú távon hatékonynak bizonyulnak, a legkülönbözőbb betegségek elleni oltások előtt is megnyithatják az utat a HIV-től a rákig.


Link másolása
KÖVESS MINKET:

Népszerű
Ajánljuk
Címlapról ajánljuk


TUDOMÁNY
A Rovatból
Horror Észak-Írországban: Zombivá váló pókokat találtak, egy újonnan felfedezett gombafaj lehet a felelős
A pókok a haláltusájuk előtt különösen viselkednek. Egy dokumentumfilm forgatása közben tették a döbbenetes felfedezést.


Egy észak-írországi dokumentumfilm forgatásán döbbenetes felfedezést tettek a kutatók.

Egy különleges gombafaj képes befolyásolni a pókok viselkedését, és haláluk előtt „zombivá” változtatja őket.

A Popular Science beszámolója szerint kutatók egy dokumentumfilm készítése közben bukkantak rá egy eddig ismeretlen gombafajra, amely képes manipulálni a pókokat. A különös élőlényt Sir David Attenborough világhírű természettudós után nevezték el Gibellula attenboroughii-nak. A felfedezésről szóló tanulmányt a Fungal Systematics and Evolution szaklap január 24-én publikálta.

A gomba hatására a pókok elhagyják a hálójukat vagy búvóhelyüket, majd furcsa módon kezdenek viselkedni, mielőtt elpusztulnak.

Ez elsősorban a Metellina merianae nevű pókfajt érinti, amely főként sötét és nedves élőhelyeken fordul elő Európában, de a barlangi keresztespók is veszélyben lehet.

A Gibellula attenboroughii működése nagyban hasonlít az Ophiocordyceps gombákéhoz, amelyek a brazil esőerdőkben élő hangyák viselkedését módosítják. Ezek a gombák képesek irányítani áldozataikat, hogy elősegítsék saját terjedésüket. A tudósok további kutatásokat terveznek, hogy pontosan megértsék, hogyan manipulálja ez az újonnan felfedezett gomba a pókok viselkedését.


Link másolása
KÖVESS MINKET:

Ajánljuk
TUDOMÁNY
A Rovatból
Figyelmeztetnek a tudósok: egy aszteroida 2032-ben akár el is találhatja a Földet
A csillagászok gőzerővel dolgoznak azon, hogy pontosan meghatározzák a 2024 YR4 nevű aszteroida pályáját. A kutatók bíznak benne, hogy a következő hónapokban kiderül, valójában kicsi az esély a becsapódásra.


A 2024 YR4 jelzésű aszteroidát tavaly december 27-én fedezte fel a chilei ATLAS teleszkóp. A szakemberek szerint az objektum 40 és 90 méter közötti átmérőjű lehet, ami egy 15-30 emeletes ház méretének felel meg. Bár ez jóval kisebb, mint az a 10 kilométeres aszteroida, amely 66 millió évvel ezelőtt a dinoszauruszok kihalásához vezetett, a csillagászok mégis komolyan foglalkoznak vele.

A jelenlegi számítások szerint a 2024 YR4-nek körülbelül 2 százalék esélye van arra, hogy 2032-ben eltalálja a Földet.

A kutatók ezért minden lehetséges eszközzel vizsgálják az objektumot, mert április után már nem lesz látható a teleszkópok számára.

A NASA által finanszírozott aszteroidamegfigyelő program egyik fontos eszköze, a James Webb űrteleszkóp hamarosan az aszteroida irányába fordul. A kutatók bíznak benne, hogy a teleszkóp infravörös érzékelői pontosabb képet adnak az égitest méretéről és pályájáról. Ez kulcsfontosságú lehet annak megállapításában, hogy milyen kockázatot jelenthet a jövőben.

A történelem során több kisebb aszteroida is komoly károkat okozott. A CNN emlékeztetett rá, hogy 1908-ban egy 30 méteres aszteroida csapódott Szibériába, és 2150 négyzetkilométeren letarolta a fákat. 2013-ban pedig egy 20 méteres égitest robbant fel Oroszország fölött, amely 7000 épületben tett kárt és több mint ezer embert megsebesített.

A kutatók szerint, ha a 2024 YR4 az előzetes becslések alapján inkább a nagyobb, 90 méteres tartományba esik, akkor egy esetleges becsapódás helyszínétől akár 50 kilométerre is hatalmas pusztítást okozhatna.

A James Webb teleszkóp március elején kezdheti el a megfigyeléseket, és a szakemberek remélik, hogy ezekből pontosabb adatokhoz jutnak.

(via Telex)


Link másolása
KÖVESS MINKET:

Ajánljuk

TUDOMÁNY
A Rovatból
Részleges napfogyatkozás lesz március végén - szabad szemmel is lehet majd látni
Március 29-én dél körül részleges napfogyatkozás lesz látható Magyarországról, a különleges égi jelenség során a Hold a Napnak egy kis szeletét takarja majd ki.


A jelenség 11:51-kor kezdődik, amikor a Hold eléri a Nap peremét és először beletakar abba. A fogyatkozás maximális fázisa 12:21-kor következik be. Ekkor a napátmérő 8,4 százalékát takarja majd ki a Hold. Ez a Nap felszínének alig 2,93 százalékos kitakarását jelenti, így lehűlést biztosan nem lehet majd tapasztalni, írja az MTI a Svábhegyi Csillagvizsgáló csütörtöki közleménye alapján.

Megfelelő szűrővel szép látványt nyújt majd a kicsorbult napkorong. A fogyatkozás 12:50-kor ér véget, amikor a Hold végleg kilép a Nap korongja elől. A jelenség könnyen megfigyelhető lesz akár a városból is, amennyiben nincs útban magas épület vagy fa.

A napfogyatkozás amellett, hogy szabad szemmel is látható lesz, megfelelő fénycsökkentő eszközökkel vagy naptávcsővel is megfigyelhető.

Felhívják azonban a figyelmet arra, hogy a legkisebb nagyítású távcsővel is tilos a Napba nézni, mert az vaksághoz vezethet. A Napot kizárólag erre a célra gyártott eszközökkel szabad megfigyelni.

A napfogyatkozás egy különleges égi együttállás eredménye, amelynek során a Hold a Föld és a Nap közé kerül. Ez az esemény csak újholdkor következhet be, amikor a Hold a Nap irányában látszik az égen. A legközelebbi napfogyatkozás 2026. augusztus 12-én este, napnyugta előtt lesz megfigyelhető Magyarországról.

Aki szeretné részletesen megtekinteni a napfogyatkozást, érdemes felkeresnie egy csillagvizsgálót. A közlemény szerint a Svábhegyi Csillagvizsgálóban külön erre a napra tervezett Csillagkapu eseménnyel készülnek a ritka jelenség megfigyelésre. A programról és a csillagászati jelenségről részletes információ olvasható a Svábhegyi Csillagvizsgáló honlapján.


Link másolása
KÖVESS MINKET:

Ajánljuk

TUDOMÁNY
A Rovatból
A NASA szerint tovább nőtt az esélye annak, hogy a Földnek ütközzön a „városgyilkos” aszteroida
Február elején még 1,2 százalék volt a becsapódás esélye, most elérte a 3,1%-ot. Ha 2024 YR4 elérné a Földet, akkor óriási pusztítást okozna.


2032-ben eltalálhatja a Földet egy hatalmas aszteroida, a 2024 YR4 – a NASA legfrissebb számításai szerint. A becsapódás esélye a korábbi 1 a 42-höz arányról 1 a 32-höz nőtt, ami azt jelenti, hogy jelenleg 3,1% az esély arra, hogy eléri bolygónkat.

A kutatók folyamatosan figyelik a 2024 YR4 pályáját, és az elmúlt hetekben többször is módosították a számításokat. Február 7-én még 1,2% volt a becsapódás esélye, de ez előbb 2,3%-ra, majd 2,6%-ra nőtt, most pedig elérte a 3,1%-ot.

A 2024 YR4 átmérője körülbelül 54 méter, ami nagyjából egy 18 emeletes épület magasságának felel meg.

Ha egy ekkora aszteroida becsapódna, 8 megatonna energia szabadulna fel, ami több mint 500-szorosa a Hirosimára ledobott atombomba erejének. Egy ekkora erejű robbanás egy egész nagyvárost is elpusztíthatna.

A kutatók azonban hangsúlyozzák, hogy a becsapódás esélye még mindig nagyon kicsi. A legfrissebb adatok szerint 96,9% az esély arra, hogy az aszteroida elkerüli a Földet. Emellett egy apró, 0,3%-os esély is fennáll arra, hogy a 2024 YR4 a Holdba csapódik.

A tudósok a Torino-skála segítségével értékelik az aszteroidák veszélyességét. A 2024 YR4 jelenleg 3-as besorolást kapott a 10-es skálán, ami azt jelenti, hogy helyi szintű pusztítást okozhat, és az esélye meghaladja az 1%-ot.

A kutatók folytatják a 2024 YR4 megfigyelését, és további mérések segíthetnek pontosabban meghatározni a pályáját. Sok olyan aszteroidát figyeltek már meg, amelyek kezdetben veszélyesnek tűntek, később azonban 0%-os becsapódási esélyt kaptak.

(via Live Science)


Link másolása
KÖVESS MINKET: