TUDOMÁNY
A Rovatból

Az oltásellenesek legfőbb érvének cáfolata: évtizedes kutatások vezettek az mRNS vakcinákhoz

A koronavírus elleni védőoltás csak látszólag készült el gyorsan. A New York Times összeszedte, mennyi tudós dolgozott évtizedeken át azokon az építőkockákon, amelyekből végül összeállt a megoldás.


Azok, akik a mai napig nem hajlandóak beoltatni magukat, a legtöbbször azt hangsúlyozzák, hogy gyanúsan gyorsan lett kész a koronavírus elleni vakcina, ami számukra azt jeleneti, hogy nem lehet megbízható.

Bár a Pfizer-BioNTech és a Moderna valóban a járvány kirobbanása után alig egy évvel piacra dobhatta az oltását, az ide vezető út egyáltalán nem volt rövid, és nem is akkor kezdődött, amikor a világ tudósai tudomást szereztek a Covid-19-ről. Az elmúlt évtizedekben a világ különböző pontjain végzett, egymástól független kutatási előzmények kellettek a sikerhez. Bár azt senki sem tudhatta, hogy a saját kutatása egyszer pont a koronavírus-járvány leküzdésében segít majd, a tudósoknak nem a nulláról kellett elindulniuk az ellenszer keresésekor.

A New York Times egy rendkívül részletes cikkben szedte össze, hogy milyen kísérletek és mennyi véletlen segített a megoldáshoz.

A történetből kiderül, hogy sokáig jelentéktelennek tűnő kutatásokról derült ki utólag, hogy nagyon is fontosak, olyan tudósok munkái kamatoztak, akik azelőtt évekig hiába könyörögtek pénzért, és akik gyakran félbe is hagyták kísérleteiket. De a szálak végül is találkoztak.

Az első lépés az volt, amikor 1960 áprilisában egy cambridge-i kutatócsoport, köztük két leendő Nobel-dijas, Francis Crick és Sidney Brenner, felfedezték a hírvívő RNS-t (mRNS) génmolekulát, amely segít a sejteknek proteint termelni.

A felfedezés után azonban sokáig semmi sem történ, mert a molekulát nehéz volt izolálni, ha megpróbálták, szétesett. 40 évvel később, 1998-ban a pennsylvaniai egyetem egyik fénymásolója előtt futott össze két tudós: Drew Weissmann, aki korábban a HIV-programban dolgozott és Karikó Katalin, aki Szegedről került Amerikába.

Karikót szenvedélyesen érdekelte az mRNS. Biztos volt benne, hogy áttörést hozhat az orvostudományban. A hagyományos oltások módosult vírusokat, vagy azok elemeit vitték be a testbe, hogy az immunrendszert a támadók ellen edzzék. Az mRNS-vakcina azonban olyan kódolt istrukciókat szállít, amelyek lehetővé teszik az emberi sejtek saját vírusproteineket termeljenek ki. Weissman és Karikó Katalin úgy gondolták, hogy így jobban utánozhatnák a valóságos fertőzést, és határozottabb immunválaszt válthatnának ki. Az mRNS törékenysége miatt azonban kevesen hittek abban, hogy valóban alkalmas lehet vakcina előállítására.

A két kutató mRNS-molekulákat adott hozzá petri-csészékben tenyésztett emberi sejtekhez, és mint az várható volt, az mNRS utasítására a sejtek különleges proteineket termeltek. De amikor az mRNS-t egerekbe fecskendezték, az állatok megbetegedtek.

Hét éven át tanulmányozták az mRNS működését, és számos kísérletük kudarcot vallott. Az állatok immunrendszere ugyanis az mRNS-t támadó kórokozónak érzékelte, ezért elpusztította, és az állatok ebbe belebetegedtek. Aztán rájöttek, hogy a sejtek egy különleges kémiai módosulással védik a saját mRNS-üket. Így az mRNS kisebb módosításával próbálkoztak, mielőtt azt beinjekciózták volt a sejtekbe. Ez működött: az mRNS-t immunválasz nélkül fogadták be a sejtek.

Karikó Katalin és Drew Weissman 2005-ben írtak eredményeikről tanulmányt, de az olyan tekintélyes szaklapok, mint a Nature vagy a Science, kategorikusan elutasították, csak a kevésbé ismert Immunity-ben jelenhetett meg.

A negatív visszhangok ellenére mindketten hittek abban, hogy felfedezésük egyszer megváltoztatja a világot.

Immár tudták, hogyan védjék meg a sejtbe került mRNS-t, de ahhoz, hogy oltásként vagy gyógyszerként működjön, e törékeny molekuláknak valami védőpajzsra volt szükségük a véráramlatban, hogy megakadályozzák lebomlásukat, miközben a sejtek felé tartanak.

És itt kapcsolódott be a második szál. Egy vancouveri biokémikus csapat évek óta azon dolgozott, hogy miként lehet a génmolekulákat biztonságosan az emberi sejtekhez szállítani.

Vezetőjük, Pieter Cullis fő kutatási területe a lipidek, a sejthártyák alapját képező zsírsav-tartalmú szerves anyagok voltak. Ezek borítják be a test valamennyi sejtjét. Cullis doktor azzal kísérletezett, hogy olyan lipidhártyákat tervez, amelyek a génanyagot „becsomagolva” viszik a sejtekbe. Nehéz dolga volt: egyrészt a kísérleti zsírgömbök mérete a sejtek 1% volt, másrészt pedig az emberi sejteknek olyan kifinomult védelmi rendszere van, hogy a tápálékon kívül semmit sem engednek be. Ráadásul egyes lipidfajták igen mérgezőek voltak és olyan elektromos töltéssel rendelkeztek, amelyek széttéphették volna a sejthártyákat. A nagy áttörést az hozta meg, hogy a zsírgolyók pozitív töltetét DNS-módosításnak vetették alá, az így a mérgező hatással együtt eltűnt, amikor bekerült a véráramlatba.

Mivel nem volt elég érdeklődés az eljárás iránt, Cullis eladta a lipid-technológia licenszét egy Protiva nevű cégnek, amely Ian MacLachlan biokémikus vezetésével 2004-ben oly módon burkolta be zsírrétegbe a génanyagot, hogy a gyógyszercégek növelhessék termelésüket, és megváltoztatta a lipidanyagot, hogy kevesebb vesszen el az értékes anyagból. Miután Karikó Katalin úgy látta, hogy ezek döntő fontosságúak lehetnek az mRNS-alapú gyógyszerekhez, megpróbálta meggyőzni MacLachlant, hogy dolgozzanak együtt. Ez azonban üzleti, illetve a szellemi tulajdon körüli jogi nézeteltérések miatt meghiúsult.

A harmadik kulcsmomentum 1996-ban kezdődött, amikor a Clinton-kormányzat ugyancsak több milliárd dollárt áldozott a 15 év alatt világszerte 6 millió halálos áldozatot követelő AIDS-et okozó HIV-vírus elleni oltás előállítására.

Bill Clinton az Ovális Irodában kérdőre vonta Dr. Anthony Faucit, aki már akkor is az amerikai elnök egészségügyi főtanácsadója volt, hogy másfél évtized alatt miért nem sikerült egy vakcinát összehozniuk. Fauci azt felelte, hogy hiányzik a tudósok közti koordináció. Öt hónappal később Clinton bejelentette egy vakcinakutató központ létrehozását, amely végül 2000-ben nyílt meg Bethesdában.

A kutatók itt megpróbálták a sejteket támadó HIV-vírusok tüskéit célbavenni, és beazonosítani az antitestekre legérzékenyebb pontjait. Bár a HIV-oltás nem sikerült, többek között azért, mert a vírus tüskéje más alakot ölt támadás előtt és alatt, de a program néhány résztvevője, köztük dr.Graham, aki éppen az AIDS-betegekkel való találkozásai nyomán szakosodott a virológiára, rájött néhány titokra, amelyek alapján fel lehetett térképezni a koronavírusok tüskéit.

2008-ban csatlakozott egy Jason McLellan nevű fiatal orvos Grahamhez, aki akkor már az elsősorban kisgyermekekre életveszélyes emberi légúti óriássejtes vírust (RSV) tanulmányozta, és együtt megtalálták azt a proteint, amely a jelenleg klinikai tesztelés alatt álló oltások alapja lett. Amikor McLellan 2013-ban saját laboratóriumának megnyitására készült Dartmouth-ban, Graham azt tanácsolta neki, hogy a koronavírusokat állítsa a kutatások középpontjába. Korábban ezeknek nem sok figyelmet szenteltek sem a kutatók, sem a befektetők, mivel azonban terjedőben volt a MERS, 11 évvel korábban pedig Dél-Kínában felbukkant a szintén gyilkos SARS, ezúttal másképp történt.

A MERS, mint minden koronavírus, emlékeztetett a HIV alakváltoztató proteinjeinek felszínen lévő tüskéire. Ellenállt minden oltáskísérletnek, rendkívül nehéz volt reprodukálni és laboratóriumban izolálni. Ráadásul nagyon nehéz volt mintát szerezni a közel-keleti fertőzöttektől, miután éveken át a nyugati tudósok helyi kollégáik kizárásával kutattak a szegény országokban, kormányaik védeni kezdték saját mintáikat. Ekkor tért vissza Mekkából Graham munkatársa, aki a jóval ártalmatlanabb HKU1-nek elnevezett koronavírustól fertőződött meg, ennek tanulmányozásából azonban fontos következtetéseket vonhattak le a veszélyesebb fajtákról is.

A csapat 2016-ban a Nature-ben publikálta a HKU1 tüskéjéről készült fotókat. Ekkor tették első ízben láthatóvá egy emberi koronavírus proteintüskéjét kezdeti formájában, mielőtt behatol a sejtekbe.

A feladat ezután az volt, hogy olyan stabil, alakját nem változtató tüskét hozzanak létre laboratóriumban, amely alkalmas oltás kifejlesztésére. Ebben fontos szerep jutott a Dartmouth-ba érkezett kínai posztdoktori ösztöndíjasnak, Nianshuang Wangnak, aki úgy vélte, hogy a SARS és MERS egy súlyosabb koronavírus-járvány előjátékai voltak. Ők kapta azt a feladatot, hogy nyugalmi állapotba hozza a MERS tüskeproteinjeit. Két sikertelen kísérlet után a harmadik megközelítés lett eredményes, de mivel 2017-ben a MERS-nek már régen vége volt, Wang tanulmányát elutasították a legtekintélyesebb szaklapok, az eljárás is csak a szabadalmi kérelemig jutott el.

Három évvel később azonban McLellan új, egy gyógyszercégnek dolgozó austini laboratóriumában elővehette felfedezését a koronavírus-vakcina előállításához.

McLellant dr. Graham riasztotta 2019. december 31-én a Vuhanból érkezett hírekkel. Azonnal munkához láttak, néhány nap alatt elkészült a covid-19 vírus tüskéinek génszekvenciája és február 15-én már közzétették a struktúrájukról és a rögzítési technikáról szóló tanulmányukat.

Ez utóbbi döntő jelentőségű volt a BioNTech és a Moderna mRNS-vakcináinak előállításához.

Miután tudósaik megkapták a tüske génszekvenciáját, szintetizálták az mRNS-molekulákat azzal az eljárással, amelyet Karikó Katalin és Drew Weissmann 15 évvel korábban kikísérletezett.

A molekulákat bevonták védő zsírréteggel, ahogy azt a vancouveri kutatók megálmodták és a tiszta folyadékot kis üvegfiolákba öntötték. Hamarosan megkezdődhettek az embereken való tesztelések.

Novemberben tették közzé az első eredményeket a Pfizer-BioNTech vakcina tesztjéről, amely 95%-os hatékonyságot mutatott.

Itt értek a csúcsra évtizedek alapvető felfedezései, amelyeket sokáig érdektelennek találtak. A fáradhatatlanul dolgozó kutatók, miközben hatalmas lépéseket tettek előre a maguk területén, nem tudhatták biztosan, hogy megéri-e a sok erőfeszítés. Ha az mRNS alapú, covid elleni vakcinák hosszú távon hatékonynak bizonyulnak, a legkülönbözőbb betegségek elleni oltások előtt is megnyithatják az utat a HIV-től a rákig.


Link másolása
KÖVESS MINKET:

Népszerű
Ajánljuk
Címlapról ajánljuk


TUDOMÁNY
A Rovatból
Összeomolhat egy atlanti-óceáni áramlatrendszer, Izland már nemzetbiztonsági fenyegetésként kezeli
A szakértők drámai lehűlést jósolnak, ami az élelmiszer-ellátást is veszélyeztetheti. A kormány most a legrosszabb forgatókönyvre készül.


Izlandon november 12-én a kormány hivatalosan is nemzetbiztonsági kockázatnak és egzisztenciális fenyegetésnek minősítette az atlanti-óceáni áramlási rendszer lehetséges összeomlását, írja a Reuters A döntés célja, hogy az ország a legrosszabb forgatókönyvekre is felkészüljön, és összehangolt tervezést indítson az élelmiszer- és energiabiztonság, az infrastruktúra és a nemzetközi közlekedés védelmében.

„Most először került egy konkrét, klímával összefüggő jelenség a Nemzetbiztonsági Tanács elé mint lehetséges egzisztenciális fenyegetés”

– mondta a Reutersnek Jóhann Páll Jóhannsson környezet-, energia- és klímaügyi miniszter.

Az Atlanti-óceáni meridionális áramlási rendszer, röviden AMOC, egy hatalmas óceáni szállítószalag, amely a trópusokról meleg vizet szállít észak felé, enyhítve ezzel Európa teleit. A klímaváltozás és a grönlandi jégtakaró olvadása miatt beáramló édesvíz azonban megzavarhatja ezt a kényes egyensúlyt. Az áramlat összeomlása Európa északi és nyugati részén extrém hideg teleket hozhatna, miközben világszerte átrendezné a csapadékmintázatokat, veszélyeztetve Afrika, India és Dél-Amerika mezőgazdaságát.

A lépés hátterében friss tudományos eredmények állnak.

Egy augusztusi modellezés szerint az összeomlás már nem számít alacsony valószínűségű eseménynek. A szimulációk szerint magas kibocsátás esetén 70 százalék, de még alacsony mellett is 25 százalék az esélye, hogy a rendszer a századfordulót követő 50-100 éven belül leáll.

„A tudomány nagyon gyorsan fejlődik, és fogy az időnk bármit tenni, mert a billenőpont lehet, hogy már egészen közel van” – mondta Stefan Rahmstorf, a Potsdami Klímahatás-kutató Intézet oceanográfusa.

Izland számára a tét óriási. Az ország gazdaságának alapját jelentő halászatot és a tengeri közlekedést megbéníthatná a tengeri jég megjelenése, ami az importfüggő szigetország ellátási láncait is elvágná. A probléma azonban nemcsak Izlandot aggasztja. Az Egyesült Királyság több mint 81 millió fontot, átszámítva nagyjából 35 milliárd forintot különített el egy olyan korai előrejelző rendszer kiépítésére, amely évtizedes távlatban jelezhetné a klímabillenőpontok közeledtét.


Link másolása
KÖVESS MINKET:

Ajánljuk
TUDOMÁNY
A Rovatból
Nincs olyan messze a világvége, mint hitted – japán és NASA-kutatók megmondták, mikor ér véget az élet a Földön
A szerzők úgy fogalmaznak: minden oxigénigényes életformának nagyjából egymilliárd éve maradt. De a cikk végén azt írják: ha addig kijön a GTA 6, pánikra még nincs ok.


A Toho Egyetem tudósai a NASA kutatóival közösen, szuperszámítógépes szimulációk alapján azt állítják: a bolygónk az 1 000 002 021. évre válik lakhatatlanná, és addigra sem az ember, sem a mikrobák nem bírják majd a forróságot – írta a LADbible.

Elsőre ijesztőnek tűnik, de a cikk szerint legalább többé nem kellene adóval, e-mailekkel és csoportmunkákkal bajlódnunk. Sőt, még a napbarnított bőr is jól mutatna – egy ideig.

A tanulmány szerint a földi élet sorsa közvetlenül a Nap élettartamához és fejlődéséhez kötődik. A Nap évmilliárdok alatt egyre forróbb és nagyobb lesz, és fokozatosan ellenséges környezetté alakítja a bolygónkat.

A kutatók 400 000 szimulációt végeztek, és ezek alapján a bolygónk végül annyira felforrósodik, hogy szinte semmilyen élőlény nem marad. Ekkorra az óceánok elpárolognak, a légkör elvékonyodik, a felszíni hőmérséklet pedig lehetetlenné teszi az életet.

Viszont az emberiség jó eséllyel sokkal előbb eltűnik. A modellek szerint a Nap erősödő sugárzása olyan légköri és környezeti változásokat indít el, amelyek megemelik a hőmérsékletet, csökkentik az oxigénszintet, és rontják a levegő minőségét.

A cikk szerint ennek korai jelei már láthatók: a kutatók erősödő naptevékenységet figyeltek meg, például koronakidobódásokat és napviharokat, amelyek megzavarják a Föld mágneses terét, és egy picit csökkentik a légköri oxigént. Ha ehhez hozzávesszük az ember okozta klímaváltozást, a kép elég baljósnak tűnik.

„A Föld bioszférájának élettartamát évek óta a Nap folyamatos fényesedése alapján vitatják meg” – mondta a tanulmány vezető szerzője, Kazumi Ozaki. „Ha ez igaz, akkor várható, hogy a légköri O₂-szint is végül csökkenni fog a távoli jövőben.”

A szerzők úgy fogalmaznak: minden oxigénigényes életformának nagyjából egymilliárd éve maradt. De a cikk végén azt írják: ha addig kijön a GTA 6, pánikra még nincs ok.


Link másolása
KÖVESS MINKET:

Ajánljuk

TUDOMÁNY
A Rovatból
Megvan a technológia a mamutok feltámasztásához, de egy borzalmas etikai kérdés áll a tudósok útjában
A terület legismertebb szereplője a Colossal nevű biotechnológiai cég, amely kifejezetten a kihalt fajok, köztük a mamut, a tasmaniai tigris és a dodó „feltámasztására” szakosodott. A cég célja nemcsak a tudományos szenzáció, hanem ökológiai helyreállítás is.


Egy tudományos áttörés egy lépéssel közelebb hozhatja a gyapjas mamutok visszatérését, miután kutatóknak sikerült ribonukleinsavat (RNS) kinyerniük egy 39 ezer éves, szibériai örök fagyban talált, rendkívül épen megmaradt mamutborjúból, Yukából – írta az UniLAD. A felfedezés azért számít mérföldkőnek, mert ez a valaha kihalt állat teteméből sikeresen kinyert legrégebbi RNS.

A koppenhágai Globe Institute munkatársa, Dr. Emilio Mármol szerint „módszereink és eredményeink valóban irányt mutathatnak, és segíthetik azokat a törekvéseket, amelyek egyes közismert állatok kihalásból való visszahozására irányulnak.”

A tanulmány társszerzője, Love Dalén, a Stockholmi Egyetem evolúciós genomika professzora ugyanakkor hangsúlyozta, hogy a klónozás még nem lehetséges azonnal. „Közvetetten a tanulmánynak van relevanciája abban az értelemben, hogy az RNS visszanyerése a jövőbeni vizsgálatokban hasznos betekintést adhat abba, mely gének fontosak bizonyos tulajdonságok kialakulásához” – nyilatkozta. Az RNS elemzése ugyanis nemcsak a genetikai kódot tárja fel, hanem azt is megmutatja, mely gének voltak aktívak az állat halálakor, így segít megérteni a mamutokra jellemző tulajdonságok, például a vastag szőrzet és a zsírréteg kialakulását.

A technológiai fejlődés ellenére a projekt komoly etikai és gyakorlati akadályokba ütközik. Az egyik legégetőbb kérdés a magzat kihordása. Erre a legvalószínűbb jelölt egy ázsiai elefánt lenne, ami béranyaként adna életet a mamutborjúnak. Ez a helyzet rendkívül traumatikus lehet mind az anyaállat, mind a borjú számára, hiszen egy teljesen más fajt kellene felnevelnie – a cikk érzékletes példája szerint ez olyan, mintha egy ember lombikprogram után egy csimpánzt szülne.

A másik probléma egy életképes populáció létrehozása. Az első klónozott egyedek genetikailag azonosak lennének, így nem jönne létre valódi génállomány, csupán egy szűk „génpocsolya”. Ez a genetikai változatosság hiánya hosszú távon fenntarthatatlanná tenné a fajt.

A cikk szerzője felveti azt a szempontot is, hogy miközben a tudósok egy kihalt faj feltámasztásán dolgoznak, rengeteg ma is élő állatfaj van a kihalás szélén az emberi tevékenység, például a fosszilis tüzelőanyagok égetése miatt, amelyek megmentésére szintén lehetne fordítani az erőforrásokat.

A gyapjas mamut visszahozása nem új ötlet; a terület legismertebb szereplője a Colossal Biosciences nevű biotechnológiai cég, amely kifejezetten a kihalt fajok, köztük a mamut, a tasmaniai tigris és a dodó „feltámasztására” szakosodott. A cég célja nemcsak a tudományos szenzáció, hanem ökológiai helyreállítás is: érvelésük szerint a mamutok mint nagytestű növényevők visszatelepítése a szibériai tundrára segíthetne helyreállítani az ottani füves pusztát, ami lassíthatná az örök fagy olvadását és az üvegházhatású gázok felszabadulását.

A Colossal által kidolgozott módszer valójában nem a klasszikus értelemben vett klónozás, hanem génszerkesztés. A terv az, hogy legközelebbi élő rokonuk, az ázsiai elefánt DNS-ét módosítják a CRISPR technológiával.

Beillesztenék azokat a mamutgéneket, amelyek a hidegtűrésért, a sűrű szőrzetért és a vastag zsírrétegért felelősek, így létrehozva egy hideghez alkalmazkodott, mamutszerű elefánthibridet, amely betölthetné a kihalt faj ökológiai szerepét.


Link másolása
KÖVESS MINKET:


TUDOMÁNY
A Rovatból
Ritka vendég, az év egyik legnagyobb csillagászati látványossága tűnik fel az esti égbolton
Október közepétől lesz leginkább látványos a C/2025 A6 (Lemmon) üstökös, amikor a horizont közelében bukkan majd fel. Több mint ezer év múlva jár majd megint errefelé.


Nem kell korán kelnünk ahhoz, hogy megpillanthassuk az év egyik legnagyobb csillagászati látványosságát - írja az Időkép.

Esténként a nyugati horizontot kell kémlelni,hogy megpillanthassuk az év egyik legjobban várt égi látványosságát, a C/2025 A6 (Lemmon) üstököst.

Eddig hajnalonként a keleten tűnt fel, de most október közepétől már az esti égbolton lesz látható. Nyugati–északnyugati irányban, a horizont közelében bukkan majd fel. Fényessége olyan, hogy sötét ég alatt már szabad szemmel is megpillantható lehet. Igazán szép látványt binokuláron vagy kis távcsövön keresztül mutat meg.

Az üstökös október 26-ig mutatja meg magát teljes pompájában. Utána már egyre közelebb kerül a horizonthoz, és a növekvő hold fénye is rontani fogja láthatóságát.

A C/2025 A6 (Lemmon) üstököst 2025. január 3-án fedezték fel a Mount Lemmon Survey égboltfelmérő program keretében. Kezdetben kisbolygónak vélték, ám később kiderült, hogy egy hosszú periódusú üstökösről van szó. Az égitest rendkívül elnyúlt ellipszis pályán mozog, és mintegy 1350 évente tér vissza a Nap közelébe. A számítások szerint a 2025. november 8-i napközelség során keringési ideje 1155 évre rövidülhet, így továbbra is ritka vendég marad a Naprendszer belső vidékein.


Link másolása
KÖVESS MINKET:

Ajánljuk