A módszerrel ráadásul nemcsak a szárazföldi csapatokat lehet segíteni a bevetés előtt, hanem a légi támogatás is hatékonyabb lehet a jövőben. A robotok a terep feltérképezése mellett kiszűrik az ellenséges katonákat, civileket, lövedékeket és robbanószereket, valamint egyéb elrejtett tárgyakat is.
A robotikai szakértő szerint azonban ezeket az intelligens gépeket ne úgy képzeljük el, mint egy kiborgot a Terminátorból. Sokkal inkább fognak ezek a berendezések hasonlítani valamiféle járműre.
Hozzátette: akadnak azonban olyan szereplők is a harcászati piacon, akiknek épp az ilyen, félelmet keltő, humanoid katonai gépek fejlesztése lenne a célja.
Az Egyesült Államokon kívül más országok is a robotikában látják a háborúk jövőjét. Nick Carter, az Egyesült Királyság katonai parancsnoka a közelmúltban arról beszélt, hogy az ország hadserege már az évtized végére 80 ezer katonából és 30 ezer robotból állhat.
Gyökeresen megváltoztathatja néhány éven belül a hadviselést az Egyesült Államok, mely "halálos és rendkívül hatékony" harci robotok kifejlesztésén dolgozik, írja a Daily Star. Az amerikai hadsereg a harcmezőt másodpercek alatt átvizsgáló és átlátó robotjai 2035-re készülhetnek el.
A NASA kutatói összefogtak a japán Toho Egyetem szakembereivel, és szuperszámítógépekkel modellezték, meddig maradhat élhető a Föld. Az eredmények egy távoli, de egyértelmű menetrendet vázolnak fel az élet végét illetően – számolt be róla a BGR.
A kutatás szerint a Nap jelenti majd a legnagyobb gondot: a következő egymilliárd évben nő a kibocsátása, és fokozatosan a lakhatósági határ fölé melegíti bolygónkat.
A becslés alapján a földi élet nagyjából az 1 000 002 021-es évben érhet véget, amikor a felszíni viszonyok már a legellenállóbb élőlényeknek is túl szélsőségesek lesznek.
A lejtmenet azonban sokkal korábban elindul. Ahogy a Nap forrósodik, a Föld légköre jelentősen átalakul: csökken az oxigénszint, meredeken nő a hőmérséklet, és romlik a levegő minősége. A részletes éghajlati és napsugárzási modellek szerint
ez nem villámcsapás-szerű összeomlás, hanem lassú, visszafordíthatatlan hanyatlás.
Ennek jelei már most látszanak. Erősödnek a napviharok és a koronakidobódások, nemrég az elmúlt 20 év legerősebb viharát rögzítették. Ezek hatnak a Föld mágneses mezejére és csökkentik a légköri oxigént.
Közben az ember okozta klímaváltozás is tovább növeli a terhelést:
a globális felmelegedés és a sarki jég olvadása a korábbi előrejelzéseknél gyorsabban halad, ami arra utal, hogy a környezet már jóval az egymilliárd éves időtáv előtt is ellehetetleníti az életet az emberek számára.
A kutatók a felkészülés és az alkalmazkodás fontosságát hangsúlyozzák. Egyesek zárt életfenntartó rendszereket és mesterséges élőhelyeket javasolnak, mások pedig a Földön túli lehetőségeket vizsgálják: a NASA és a SpaceX hosszú távú Mars-missziói az emberi élet fennmaradásának lehetséges útjait keresik, ha bolygónk lakhatatlanná válik.
A NASA kutatói összefogtak a japán Toho Egyetem szakembereivel, és szuperszámítógépekkel modellezték, meddig maradhat élhető a Föld. Az eredmények egy távoli, de egyértelmű menetrendet vázolnak fel az élet végét illetően – számolt be róla a BGR.
A kutatás szerint a Nap jelenti majd a legnagyobb gondot: a következő egymilliárd évben nő a kibocsátása, és fokozatosan a lakhatósági határ fölé melegíti bolygónkat.
Regisztrálj, vagy lépj be, hogy tovább tudd olvasni a cikket!
A mesterséges intelligencia képes lehet akár tíz évre előre megjósolni, hogy kinek milyen betegsége lesz
A modell névtelen kórlapok mintáit figyeli, és évekre előre megmutatja, hol nagyobb a kockázat. A fejlesztők szerint így hamarabb lehet beavatkozni, és még az is tervezhető, hány szívinfarktusra kell készülnie egy városnak 2030-ban.
A kutatók szerint a mesterséges intelligencia akár tíz évre előre jelezhet egészségi gondokat, írja a BBC. A rendszer az emberek egészségügyi adataiban keres mintákat, és több mint 1000 betegség kockázatát számolja. Úgy írják le, mint egy időjárás-előrejelzést: százalékban adja meg a valószínűséget. A cél, hogy időben kiszűrje a magas kockázatú embereket, és évekre előre segítse a kórházak tervezését.
A Delphi-2M nevű modell hasonló technológiára épül, mint a közismert MI-chatbotok, például a ChatGPT. A chatbotok nyelvi mintákat tanulnak, és megjósolják, milyen szavak követik egymást. A Delphi-2M névtelenített egészségügyi adatokból tanulta meg felismerni a mintázatokat, és így jelzi előre, mi következhet és mikor. Nem mond pontos dátumot, hanem 1231 betegség valószínűségét becsli.
„Ahogy az időjárásnál 70 százalék esélyt jelezhetünk az esőre, ugyanezt meg tudjuk tenni az egészségügyben is”
– mondta Ewan Birney professzor, az Európai Molekuláris Biológiai Laboratórium megbízott főigazgatója. „Ráadásul nemcsak egy betegségre, hanem egyszerre az összesre – ilyet még soha nem tudtunk. Izgatott vagyok” – tette hozzá.
A fejlesztők először brit, névtelenített adatokon tanították a modellt: kórházi felvételek, háziorvosi adatok és életmódbeli szokások (például dohányzás) több mint 400 ezer résztvevőtől a UK Biobank projektből. Ezután más Biobank-résztvevők adataival ellenőrizték az előrejelzéseket, majd 1,9 millió ember dániai egészségügyi adatán is letesztelték. „Ha a modellünk azt mondja, hogy a következő évben tízből egy az esély, akkor tényleg nagyjából tízből egy esetben következik be” - tette hozzá Birney professzor.
A rendszer azoknál a betegségeknél működik a legjobban, amelyeknek jól követhető a lefolyása, például a 2-es típusú cukorbetegség, a szívinfarktus vagy a szepszis. Az inkább esetleges fertőzéseknél gyengébben teljesít.
Az orvosok ma is írnak fel koleszterincsökkentőt annak alapján, mekkora valakinél a szívinfarktus vagy a stroke kockázata. Az MI-eszköz még nem áll készen a klinikai használatra, de hasonló módon tervezik alkalmazni: korán azonosítani a magas kockázatú embereket, amikor még van esély megelőzni a betegséget. Ez jelenthet gyógyszert vagy célzott életmódtanácsot – például akinek nagyobb az esélye bizonyos májbetegségekre, annak a szokásosnál jobban megérheti visszavenni az alkoholfogyasztásból.
Az MI a szűrőprogramok tervezésében is segíthet, és egy térség összes egészségügyi adatát elemezve előre jelezheti a várható igényeket,
például hogy 2030-ban nagyjából hány szívinfarktus várható egy adott városban.
„Ez egy újfajta megközelítés kezdete az emberi egészség és a betegséglefolyás megértésében” – mondta Moritz Gerstung professzor, a Német Rákkutató Központ (DKFZ) onkológiai MI-osztályának vezetője. „Az olyan generatív modellek, mint a miénk, egy napon személyre szabhatják az ellátást, és nagy léptékben előre jelezhetik az egészségügyi szükségleteket.”
A Nature tudományos folyóiratban ismertetett modellt még finomítani és tesztelni kell a klinikai használat előtt. Torzítást okozhat, hogy a UK Biobank adatai főként 40–70 éves emberektől származnak. A fejlesztők most bővítik a modellt képalkotó vizsgálatokkal, genetikai információkkal és vérvizsgálati eredményekkel.
„Fontos hangsúlyozni, hogy ez kutatás – mindent alaposan tesztelni, szabályozni és átgondolni kell, mielőtt használni kezdjük, de a technológia adott ahhoz, hogy ilyen előrejelzéseket készítsünk” – nyomatékosította Birney professzor. Úgy véli, a genomika egészségügyi bevezetéséhez hasonló utat járhat be a folyamat: a tudósok bizalmától a rutinszerű klinikai használatig akár egy évtized is eltelhet.
A kutatás az Európai Molekuláris Biológiai Laboratórium, a Német Rákkutató Központ (DKFZ) és a Koppenhágai Egyetem együttműködésében készült. Gustavo Sudre, a King’s College London kutatója így értékelt: „Ez a munka jelentős lépés a skálázható, értelmezhető és – ami a legfontosabb – etikailag felelős orvosi prediktív modellezés felé.”
A kutatók szerint a mesterséges intelligencia akár tíz évre előre jelezhet egészségi gondokat, írja a BBC. A rendszer az emberek egészségügyi adataiban keres mintákat, és több mint 1000 betegség kockázatát számolja. Úgy írják le, mint egy időjárás-előrejelzést: százalékban adja meg a valószínűséget. A cél, hogy időben kiszűrje a magas kockázatú embereket, és évekre előre segítse a kórházak tervezését.
A Delphi-2M nevű modell hasonló technológiára épül, mint a közismert MI-chatbotok, például a ChatGPT. A chatbotok nyelvi mintákat tanulnak, és megjósolják, milyen szavak követik egymást. A Delphi-2M névtelenített egészségügyi adatokból tanulta meg felismerni a mintázatokat, és így jelzi előre, mi következhet és mikor. Nem mond pontos dátumot, hanem 1231 betegség valószínűségét becsli.
Regisztrálj, vagy lépj be, hogy tovább tudd olvasni a cikket!
Megkezdték a humanoid robotok tömeggyártását Kínában
A cég több ezer előrendelést említ, az ár körülbelül 11,5 millió forint. A mozgásnál emberi mintákat követnek: a végtagok összehangolását szimulációk és utánzásos tanulás segíti.
A kínai Kepler Robotics elindította a K2 Bumblebee humanoid robot tömeggyártását, írja a Rakéta. A modellt logisztikai munkákra, gyártási feladatokban segítésre, kiállításokra és „speciális műveletekre” szánják.
A K2 hibrid architektúrával működik, ami energiahatékony üzemet tesz lehetővé. A gyártó szerint a humanoid egyhuzamban akár 8 órát is dolgozik.
Az ár a hasonló, általános célú humanoidokhoz képest kicsivel magasabb:
körülbelül 11,5 millió forint.
A robotra már több ezer megrendelés érkezett.
A cég a külalakot kevésbé, a mozgást viszont nagyon „emberire” tervezte. A K2 Bumblebee imitációs tanulással és szimulációkkal sajátította el a járás emberihez hasonló jellegzetességeit, beleértve a végtagok mozgásának összehangolását.
A humanoid robotról készült videót itt lehet megnézni:
A kínai Kepler Robotics elindította a K2 Bumblebee humanoid robot tömeggyártását, írja a Rakéta. A modellt logisztikai munkákra, gyártási feladatokban segítésre, kiállításokra és „speciális műveletekre” szánják.
A K2 hibrid architektúrával működik, ami energiahatékony üzemet tesz lehetővé. A gyártó szerint a humanoid egyhuzamban akár 8 órát is dolgozik.
Regisztrálj, vagy lépj be, hogy tovább tudd olvasni a cikket!